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NEvoPy

NEvoPy is an open source neuroevolution framework for Python. It provides a simple and intuitive API for researchers
and enthusiasts in general to quickly tackle machine learning problems using neuroevolutionary algorithms. NEvoPy
is optimized for distributed computing and has compatibility with TensorFlow.

Currently, the neuroevolutionary algorithms implemented by NEvoPy are:

• NEAT (NeuroEvolution of Augmenting Topologies), a powerful method by Kenneth O. Stanley for evolving
neural networks through complexification;

• the standard fixed-topology approach to neuroevolution, with support to TensorFlow and deep neural networks.

Note, though, that there’s much more to come!

In addition to providing high-performance implementations of powerful neuroevolutionary algorithms, such as NEAT,
NEvoPy also provides tools to help you more easily implement your own algorithms.

Neuroevolution, a form of artificial intelligence that uses evolutionary algorithms to generate artificial neural networks
(ANNs), is one of the most interesting and unexplored fields of machine learning. It is a vast and expanding area of
research that holds many promises for the future.

If you encounter any confusing, incomplete or incorrect information in this project, please open an issue in our GitHub
project.
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CHAPTER

ONE

NEVOPY OVERVIEW

1.1 Neuroevolution basics

Neuroevolution refers to the artificial evolution of neural networks using evolutionary algorithms. It’s heavily inspired
by the biological concept of Evolution and makes use of a population-based metaheuristic and mechanisms such as
selection, reproduction, recombination and mutation to generate solutions.

A neural network is encoded, either directly or indirectly, by a genome (also called genotype or individual). The neural
network encoded by a genome is its phenotype. We call a set of competing genomes a population. A genome’s fitness
is a measure of how well the genome performs in a given task. The goal of a neuroevolutionary algorithm is to evolve
a population of genomes in order to produce genomes with a high fitness value.

The evolutionary process is divided into generations. In each generation, the population’s genomes have their fitness
calculated. Genomes with a higher fitness value have a greater chance of leaving offspring for the next generation. By
favoring the reproduction of fitter genomes, the algorithm gradually increases the total fitness of the population.

If you are a beginner to neuroevolution and want to know more about this awesome area of research, here’s a couple
of papers and articles to get you started:

• Evolving artificial neural networks (great review paper);

• Evolving Neural Networks through Augmenting Topologies (the original paper of the NEAT algorithm);

• Neuroevolution: A different kind of deep learning (great introductory article about NE, by the creator of NEAT);

• Neuroevolution: A Primer On Evolving Artificial Neural Networks (great introductory article about NE);

• Welcoming the Era of Deep Neuroevolution (article about recent research by Uber AI Labs).

1.2 Populations and genomes in NEvoPy

In NEvoPy, a genome is an instance of a subclass that implements BaseGenome. Although each neuroevolutionary
algorithm defines its own type of genome by implementing the BaseGenome class, all genomes are governed by the
same general API. Note that in NEvoPy’s API there isn’t any distinction between a genome and the neural network
it encodes. A genome, just like a neural network, must be capable of processing inputs based on its nodes and
connections in order to produce an output. It also must be able to mutate and to generate offspring.

A population of genomes, on the other hand, is represented by the class BasePopulation. It defines a general
API that all neuroevolutionary algorithms implemented by NEvoPy follow. Each algorithm makes its own imple-
mentation of that class - it’s where the core of the evolutionary algorithm lives. The main method of the API is
BasePopulation.evolve(), which triggers the evolutionary process in a population.

Most neuroevolutionary algorithms use a genetic algorithm to evolve the neural networks. What usually changes
between different algorithms is how the genomes behave (how they reproduce, mutate and encode a neural network, for
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example). With that in mind, NEvoPy implements a general-purpose genetic algorithm (see GeneticPopulation)
that can be used as a base for most neuroevolutionary algorithms. This algorithm doesn’t make strong assumptions
about the genomes its evolving (it “doesn’t care” if the genome encodes a network directly or indirectly, for example),
so it can be used in a wide variety of scenarios. It also supports speciation.

NEvoPy currently implements the following neuroevolutionary algorithms:

• Neuroevolution of Augmenting Topologies (NEAT);

• Fixed-topology deep-neuroevolution.

However, if you need more, implementing your own neuroevolutionary algorithm with NEvoPy is easy. Sim-
ply create a class that implements BaseGenome (thus defining how you want your genomes to behave) and let
GeneticPopulation do the rest.

1.3 Evolving neural networks with NEvoPy

To evolve some neural networks with NEvoPy, the first thing you have to do is create a new population of genomes
(represented by a class that implements BasePopulation). As an example, let’s create a NeatPopulation
(implements the NEAT algorithm):

import nevopy as ne
population = ne.neat.NeatPopulation(size=100,

num_inputs=10,
num_outputs=3)

The code above creates an instance of NeatPopulation, used to evolve instances of NeatGenome with the
NEAT algorithm. The genomes are built to receive an array-like input of length 10 and to output the results as an
array-like object of length 3. In NEvoPy, the inputs and outputs are, in most cases, instances of numpy.ndarray or
tensorflow.tensor.

Now, we need to specify some routine for evaluating the population’s genomes, i.e., for measuring the performance
of each of the population’s genomes on the task at hand in each generation. We call the measure of a genome’s
performance its fitness and the routine used to calculate this value a fitness function. Generally, a fitness function
should look like this:

def fitness_function(genome):
# (the genome's fitness is calculated here)
# ...
return fitness

Having created a population and defined a fitness function, we’re ready to start the evolutionary process. We do that
by calling the evolve() method:

history = population.evolve(generations=100,
fitness_function=fitness_function)

The code above runs the NEAT algorithm for 100 generations. The evolve() method returns a History object,
which contains useful statistics related to the evolutionary process. We can, for example, visualize the progression of
the population’s fitness by executing the following:

history.visualize()

Here is an example of a plot generated by this method:

The code bellow gets the fittest genome of the population, visualizes its topology and saves the genome:

4 Chapter 1. NEvoPy Overview
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best_genome = population.fittest()
best_genome.visualize()
best_genome.save("./best_genome.pkl")

For more information on how NEvoPy works, please take a look at our docs. For more practical examples, go to here.

1.3. Evolving neural networks with NEvoPy 5
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CHAPTER

TWO

INSTALLATION

2.1 Install NEvoPy from PyPI using pip

To install the latest stable release of NEvoPy from PyPI, just run the following command:

$ pip install nevopy

In case you want to install NEvoPy with all the its most recent changes (might be unstable), you can directly install it
from GitHub with pip:

$ pip install git+https://github.com/Talendar/nevopy

2.2 Install NEvoPy by cloning the project’s GitHub repository

To install NEvoPy directly from its source code, first clone our GitHub repository by running the command:

$ git clone https://github.com/Talendar/nevopy

Then change directories to the nevopy folder and install the package using pip:

$ cd nevopy
$ pip install .

Alternatively, you can install NEvoPy by executing the setup.py script (not recommended):

$ cd nevopy
$ python3 setup.py install

7
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CHAPTER

THREE

EXAMPLES

To learn the basics of NEvoPy, the XOR example is a good place to start. More examples can be found in the examples
folder of the project’s GitHub repo.

9

https://colab.research.google.com/github/Talendar/nevopy/blob/master/examples/xor/nevopy_xor_example.ipynb
https://github.com/Talendar/nevopy/tree/master/examples


NEvoPy

10 Chapter 3. Examples



CHAPTER

FOUR

CALLBACKS

4.1 Introduction

A callback is a powerful tool to customize the behaviour of a population of genomes during the neuroevolutionary pro-
cess. Examples include FitnessEarlyStopping to stop the evolution when a certain fitness has been achieved by
the population, or BestGenomeCheckpoint to periodically save the best genome of a population during evolution.
For a list with all the pre-implemented callbacks, take a look at nevopy.callbacks.

In this quick guide you’ll learn what a NEvoPy callback is, what it can do, and how you can build your own.

4.2 NEvoPy callbacks overview

In NEvoPy, all callbacks subclass the Callback class and override a set of methods called at various stages of
the evolutionary process. Callbacks are useful to get a view on internal states and statistics of a population and its
genomes, as well as for modifying the behavior of the evolutionary algorithm being used.

You can pass a list of callbacks (as the keyword argument callbacks) to the evolve()method of your population.

4.3 An overview of callback methods

A callback implements one or more of the following methods (check each method’s documentation for a list of ac-
cepted parameters):

• on_generation_start: called at the beginning of each new generation.

• on_fitness_calculated: called right after the fitness values of the population’s genomes are calculated.

• on_mass_extinction_counter_updated: called right after the mass extinction counter is updated.
The mass extinction counter counts how many generations have passed since the fitness of the population’s best
genomes improved.

• on_mass_extinction_start: called at the beginning of a mass extinction event. A mass extinction
event occurs when the population’s fitness haven’t improved for a predefined number of generations. It results
in the replacement of all the population’s genomes (except for the fittest genome) for new randomly generated
genomes.

• on_reproduction_start: called at the beginning of the reproductive process.

• on_speciation_start: called at the beginning of the speciation process. If the neuroevolutionary algo-
rithm doesn’t use speciation, this method isn’t called at all.

• on_generation_end: called at the end of each generation.

11
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• on_evolution_end: called when the evolutionary process ends.

4.4 Writing your own callbacks

To build your own callback, simply create a new class that has Callback as its parent class:

class MyCallback(Callback):
def on_generation_start(self,

current_generation,
max_generations):

print("This is printed at the start of every generation!")
print(f"Starting generation {current_generation} of "

f"{max_generations}.")

Then, just create a new instance of your callback and pass it to the evolve() of your population:

population.evolve(generations=100,
fitness_function=my_func,
callbacks=[MyCallback()])

12 Chapter 4. Callbacks
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FIVE

PROCESSING

5.1 Introduction

In NEvoPy, most of the heavy processing involved in evolving a population of neural networks is managed by
a processing scheduler. Processing schedulers allow the implementation of computation methods (like the use
of serial or parallel processing) to be separated from the implementation of the neuroevolutionary algorithms.
Examples of processing schedulers in NEvoPy include the PoolProcessingScheduler, that uses Python’s
multiprocessing module to implement parallel processing, and the RayProcessingScheduler, that uses
the ray framework to implement distributed computing (it even allows you to use clusters!).

In this quick guide you’ll learn what a NEvoPy processing scheduler is, what it can do, and how you can build your
own. For a list with all the pre-implemented processing schedulers, take a look at nevopy.processing.

5.2 NEvoPy processing schedulers overview

In NEvoPy, all processing schedulers subclass the ProcessingScheduler class and override its run()
method, which is responsible for processing a batch of items (TProcItem) and returning the corresponding re-
sults (TProcResult). The items and the results can be anything, but they usually are genomes and their fitnesses,
respectively.

Processing schedulers might also be used to handle the computations associated with the reproductive process of a
population.

5.3 Writing your own processing schedulers

To build your own processing scheduler, simply create a new class that has ProcessingScheduler as its parent
class and implement the run() method:

class MyProcessingScheduler(ProcessingScheduler):

def run(items, func):
# ...
return results

Then, just create a new instance of your new processing scheduler and pass it to the constructor of your population!

13
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CHAPTER

SIX

NEVOPY PACKAGE

6.1 Subpackages

6.1.1 nevopy.fixed_topology package

Subpackages

nevopy.fixed_topology.layers package

Submodules

nevopy.fixed_topology.layers.base_layer module

Defines the abstract class that serves as a base for all the neural layers used by fixed-topology neuroevolutionary
algorithms.

class nevopy.fixed_topology.layers.base_layer.BaseLayer(config=None, in-
put_shape=None, mu-
table=True)

Bases: abc.ABC

Abstract base class that defines a neural network layer.

This abstract base class defines the general structure and behaviour of a fixed topology neural network layer in
the context of neuroevolutionary algorithms.

Parameters

• config (Optional[FixedTopologyConfig]) – Settings being used in the current
evolutionary session. If None, a config object must be assigned to the layer later on, before
calling the methods that require it.

• input_shape (Optional[Tuple[int, ..]]) – Shape of the data that will be pro-
cessed by the layer. If None, an input shape for the layer must be manually specified later
or be inferred from an input sample.

• mutable (Optional[bool]) – Whether or not the layer can have its weights changed
(mutation).

config
Settings being used in the current evolutionary session. If None, a config object hasn’t been assigned to
the layer yet.

Type Optional[FixedTopologyConfig]
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mutable
Whether or not the layer can have its weights changed (mutation).

Type bool

abstract build(input_shape)
Builds the layer’s weight and bias matrices.

If the layer has already been built, it will be built again (new weight and bias matrices will be generated).

Parameters input_shape (Tuple[int, ..]) – Tuple with the shape of the inputs that
will be fed to the layer.

Raises ValueError – If the layer isn’t compatible with the given input shape.

Return type None

abstract deep_copy()
Makes an exact/deep copy of the layer.

Return type BaseLayer

Returns An exact/deep copy of the layer, including its weights and biases.

property input_shape
The expected shape of an input for the layer.

Return type Optional[Tuple[int, . . . ]]

Returns A tuple with the layer’s input shape or None if an input shape hasn’t been specified yet.

classmethod load(abs_path)
Loads the layer from the given absolute path.

This method uses, by default, pickle to load the layer.

Parameters abs_path (str) – Absolute path of the saved “.pkl” file. If the given path doesn’t
end with the suffix “.pkl”, it will be automatically added to it.

Return type BaseLayer

Returns The loaded layer.

abstract mate(other)
Mates two layers to produce a new layer (offspring).

Implements the sexual reproduction between a pair of layers. The new layer inherits information from
both parents (not necessarily in an equal proportion)

Parameters other (Any) – The second layer . If it’s not compatible for mating with the current
layer (self ), an exception will be raised.

Return type BaseLayer

Returns A new layer (the offspring born from the sexual reproduction between the current layer
and the layer passed as argument. If the layer is immutable, other is expected to be equal
to self, so a deep copy (BaseLayer.deep_copy()) of the layer is returned.

Raises IncompatibleLayersError – If the layer passed as argument to other is incom-
patible with the current layer (self ).

abstract mutate_weights()
Randomly mutates the weights of the layer’s connections.

If the layer is immutable, this method doesn’t do anything.

Return type None

16 Chapter 6. nevopy package
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abstract process(x)
Feeds the given input(s) to the layer.

This is where the layer’s logic lives. If the layer hasn’t been built yet, it will be automatically built using
the given input shape.

Parameters x (Any) – The input(s) to be fed to the layer. Usually a NumPy ndarray or a
TensorFlow tensor.

Return type Any

Returns The output of the layer. Usually a NumPy ndarray or a TensorFlow tensor.

Raises InvalidInputError – If the shape of x doesn’t match the input shape expected by
the layer.

abstract random_copy()
Makes a random copy of the layer.

Return type BaseLayer

Returns A new layer with the same topology of the current layer, but with newly initialized
weights and biases. If the layer is immutable, a deep copy (BaseLayer.deep_copy())
of the layer is returned instead.

save(abs_path)
Saves the layer on the absolute path provided.

This method uses, by default, pickle to save the layer.

Parameters abs_path (str) – Absolute path of the saving file. If the given path doesn’t end
with the suffix “.pkl”, it will be automatically added to it.

Return type None

abstract property weights
A list with the layer’s weight matrices as numpy arrays.

For most layers, it’s a tuple containing a weight matrix and a bias vector.

Return type List[ndarray]

exception nevopy.fixed_topology.layers.base_layer.IncompatibleLayersError
Bases: Exception

Indicates that an attempt has been made to mate (sexual reproduction) two incompatible layers.

nevopy.fixed_topology.layers.mating module

Implements some mating (sexual reproduction) functions that can be used to generate a new neural network layer from
two parent layers.

nevopy.fixed_topology.layers.mating.check_weights_compatibility(weight_list1,
weight_list2)

Checks the mating compatibility between two lists of weight matrices.

Raises IncompatibleLayersError – If one or more weight matrices in one of the lists don’t
have the same shape as the corresponding weight matrices in the other list.

nevopy.fixed_topology.layers.mating.exchange_units_mating(layer1, layer2)
Mates (sexual reproduction) two neural layers by exchanging units.

6.1. Subpackages 17
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The term “unit” means different things depending on the type of the layers. For a Conv2D layer, for instance,
an unit is a filter (kernel). For a Dense layer, on the other hand, an unit is a neuron (including the weights of its
connections). Bias terms are also considered “units”.

Generally, we can define an unit as being whatever you get when indexing a weight matrix by its last shape.
Given a layer L, an unit of its weight matrix at index w is given by L.weights[w][. . . , i], where i is the index of
the unit (i is in the interval [0, w.shape[-1][).

Parameters

• layer1 (BaseLayer) – An instance of a subclass of BaseLayer.

• layer2 (BaseLayer) – An instance of a subclass of BaseLayer.

Return type BaseLayer

Returns A new layer that inherits information from both parents.

Raises IncompatibleLayersError – If the weight matrices of the two given layers are not of
the same shape (i.e., the layers are not compatible for mating).

nevopy.fixed_topology.layers.mating.exchange_weights_mating(layer1, layer2)
Mates (sexual reproduction) two neural layers by exchanging weights.

Each of the new layer’s weights is randomly inherited, with equal chance, from one of the parent layers.

Parameters

• layer1 (BaseLayer) – An instance of a subclass of BaseLayer.

• layer2 (BaseLayer) – An instance of a subclass of BaseLayer.

Return type BaseLayer

Returns A new layer that randomly inherits its individual weights from its parent layers.

Raises IncompatibleLayersError – If the weight matrices of the two given layers are not of
the same shape (i.e., the layers are not compatible for mating).

nevopy.fixed_topology.layers.mating.weights_avg_mating(layer1, layer2)
Mates (sexual reproduction) two layers by averaging their weights.

Each of the new layer’s weight is the simple average (sum and divide by 2) of the parent layers weights.

Parameters

• layer1 (BaseLayer) – An instance of a subclass of BaseLayer.

• layer2 (BaseLayer) – An instance of a subclass of BaseLayer.

Return type BaseLayer

Returns A new layer whose weights are the simple average of the parent layers weights.

Raises IncompatibleLayersError – If the weight matrices of the two given layers are not of
the same shape (i.e., the layers are not compatible for mating).

18 Chapter 6. nevopy package
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nevopy.fixed_topology.layers.tf_layers module

Implements subclasses of BaseLayer that wrap TensorFlow layers.

class nevopy.fixed_topology.layers.tf_layers.TFConv2DLayer(filters, kernel_size,
strides=(1, 1),
padding='valid',
activation='relu', mat-
ing_func=<function
ex-
change_units_mating>,
config=None, in-
put_shape=None,
mutable=True,
**tf_kwargs)

Bases: nevopy.fixed_topology.layers.tf_layers.TensorFlowLayer

Wraps a TensorFlow 2D convolution layer.

This is a simple wrapper for tf.keras.layers.Conv2D.

class nevopy.fixed_topology.layers.tf_layers.TFDenseLayer(units, activa-
tion=None, mat-
ing_func=<function ex-
change_weights_mating>,
config=None, in-
put_shape=None,
mutable=True,
**tf_kwargs)

Bases: nevopy.fixed_topology.layers.tf_layers.TensorFlowLayer

Wraps a TensorFlow dense layer.

This is a simple wrapper for tf.keras.layers.Dense.

class nevopy.fixed_topology.layers.tf_layers.TFFlattenLayer(mating_func=None,
config=None, in-
put_shape=None,
mutable=False,
**tf_kwargs)

Bases: nevopy.fixed_topology.layers.tf_layers.TensorFlowLayer

Wraps a TensorFlow flatten layer.

This is a simple wrapper for tf.keras.layers.Flatten.

class nevopy.fixed_topology.layers.tf_layers.TFMaxPool2DLayer(pool_size=(2, 2),
strides=None,
padding='valid',
mat-
ing_func=None,
config=None, in-
put_shape=None,
mutable=False,
**tf_kwargs)

Bases: nevopy.fixed_topology.layers.tf_layers.TensorFlowLayer

Wraps a TensorFlow 2D max pooling layer.

This is a simple wrapper for tf.keras.layers.MaxPool2D.

6.1. Subpackages 19

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten


NEvoPy

class nevopy.fixed_topology.layers.tf_layers.TensorFlowLayer(layer_type, mat-
ing_func=<function
ex-
change_units_mating>,
config=None, in-
put_shape=None,
mutable=True,
**tf_kwargs)

Bases: nevopy.fixed_topology.layers.base_layer.BaseLayer

Wraps a TensorFlow layer.

This class wraps a TensorFlow layer, making it compatible with NEvoPy’s neuroevolutionary algorithms. It
handles the mutation and reproduction of the TensorFlow layer.

In most cases, there is no need to create subclasses of this class. Doing that to frequently used types of lay-
ers, however, may be desirable, since it makes using those types of layers easier (see TFConv2DLayer and
TFDenseLayer as examples).

When inheriting this class, you’ll usually do something like this:

class MyTFLayer(TensorFlowLayer):
def __init__(self,

arg1, arg2,
activation="relu",
mating_func=mating.exchange_units_mating,
config=None,
input_shape=None,
mutable=True,

**tf_kwargs: Dict[str, Any]):
super().__init__(

layer_type=tf.keras.layers.SomeKerasLayer,

**{k: v for k, v in locals().items()
if k not in ["self", "tf_kwargs", "__class__"]},

**tf_kwargs,
)

Parameters

• layer_type (Union[str, Type[tf.keras.layers.Layer]]) – A reference
to the TensorFlow’s class that represents the layer (tf.keras.layers.Dense, for ex-
ample). If it’s a string, the appropriate type will be inferred (note that it must be listed in
TensorFlowLayer.KERAS_LAYERS).

• mating_func (Optional[Callable[[BaseLayer, BaseLayer],
BaseLayer]]) – Function that mates (sexual reproduction) two layers. It should
receive two layers as input and return a new layer (the offspring). You can use one of the
pre-built mating functions (see fixed_topology.layers.mating) or implement
your own. If the layer is immutable, this parameter should receive None as argument.

• config (Optional[FixedTopologyConfig]) – Settings being used in the current
evolutionary session. If None, a config object must be assigned to the layer later on, before
calling the methods that require it.

• input_shape (Optional[Tuple[int, ..]]) – Shape of the data that will be pro-
cessed by the layer. If None, an input shape for the layer must be manually specified later
or be inferred from an input sample.

• mutable (Optional[bool]) – Whether or not the layer can have its weights changed
(mutation).

20 Chapter 6. nevopy package
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• **tf_kwargs – Named arguments to be passed to the constructor of the TensorFlow
layer.

KERAS_LAYERS = {'conv2D': <class 'tensorflow.python.keras.layers.convolutional.Conv2D'>, 'dense': <class 'tensorflow.python.keras.layers.core.Dense'>, 'flatten': <class 'tensorflow.python.keras.layers.core.Flatten'>, 'lstm': <class 'tensorflow.python.keras.layers.recurrent_v2.LSTM'>, 'max_pool_2D': <class 'tensorflow.python.keras.layers.pooling.MaxPooling2D'>, 'rnn': <class 'tensorflow.python.keras.layers.recurrent.RNN'>, 'simple_rnn': <class 'tensorflow.python.keras.layers.recurrent.SimpleRNN'>}

build(input_shape)
Wrapper for tf.keras.layers.Layer.build().

Return type None

deep_copy()
Makes an exact/deep copy of the layer.

Return type TensorFlowLayer

Returns An exact/deep copy of the layer, including its weights and biases.

mate(other)
Mates two layers to produce a new layer (offspring).

Implements the sexual reproduction between a pair of layers. The new layer inherits information from
both parents (not necessarily in an equal proportion)

Parameters other (Any) – The second layer . If it’s not compatible for mating with the current
layer (self ), an exception will be raised.

Return type TensorFlowLayer

Returns A new layer (the offspring born from the sexual reproduction between the current layer
and the layer passed as argument. If the layer is immutable, other is expected to be equal
to self, so a deep copy (BaseLayer.deep_copy()) of the layer is returned.

Raises IncompatibleLayersError – If the layer passed as argument to other is incom-
patible with the current layer (self ).

mutate_weights(_test_info=None)
Randomly mutates the weights of the layer’s connections.

Each weight has a chance to be perturbed by a predefined amount or to be reset. The probabilities are
obtained from the settings of the current evolutionary session.

If the layer is immutable, nothing happens (the layer’s weights remain unchanged).

Return type None

process(x)
Feeds the given input(s) to the layer.

This is where the layer’s logic lives. If the layer hasn’t been built yet, it will be automatically built using
the given input shape.

Parameters x (Any) – The input(s) to be fed to the layer. Usually a NumPy ndarray or a
TensorFlow tensor.

Return type Tensor

Returns The output of the layer. Usually a NumPy ndarray or a TensorFlow tensor.

Raises InvalidInputError – If the shape of x doesn’t match the input shape expected by
the layer.

random_copy()
Makes a random copy of the layer.

Return type TensorFlowLayer
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Returns A new layer with the same topology of the current layer, but with newly initialized
weights and biases. If the layer is immutable, a deep copy (BaseLayer.deep_copy())
of the layer is returned instead.

property tf_layer
The tf.keras.layers.Layer used internally.

Return type Layer

property weights
The current weight matrices of the layer.

Wrapper for tf.keras.layers.Layer.get_weights().

The weights of a layer represent the state of the layer. This property returns the weight values associated
with this layer as a list of Numpy arrays. In most cases, it’s a list containing the weights of the layer’s
connections and the bias values (one for each neuron, generally).

Return type List[ndarray]

Module contents

Neural network layers to be used with NEvoPy’s fixed-topology neuroevolutionary algorithms.

Submodules

nevopy.fixed_topology.genomes module

Implements genomes (subclasses of BaseGenome) that encode neural networks with a fixed topology.

class nevopy.fixed_topology.genomes.FixedTopologyGenome(layers, config=None, in-
put_shape=None)

Bases: nevopy.base_genome.BaseGenome

Genome that encodes a fixed-topology multilayer neural network.

This genome directly encodes a multilayer neural network with fixed topology. The network is defined by its
layers (instances of a subclass of BaseLayer), specified during the genome’s creation.

Note: The config objects of individual layers are forcefully replaced by the config object of the genome when
its assigned with a new one!

Parameters

• layers (List[BaseLayer]) – List with the layers of the network (instances of a sub-
class of BaseLayer). It’s not required to set the input shape of each individual layer. If
the input shapes are not set, they will be automatically set when a call to process() is
made. There is no need to pass the config object to the layers (it’s done automatically when
this class is instantiated).

• config (Optional[GeneticAlgorithmConfig]) – Settings of the current evolu-
tionary session. If None, a config object must be assigned to this genome latter.

• input_shape (Optional[Tuple[int, ..]]) – Shape of the inputs that will be fed
to the genome. If a value is specified, the genome’s layers are built (they have their weights
initialized). If None, an input shape will be inferred later when an input is fed to the genome
(note, however, that the weights won’t be initialized until it occurs).
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layers
List with the layers of the network (instances of a subclass of BaseLayer).

Type List[BaseLayer]

property config
Settings of the current evolutionary session.

If None, a config object hasn’t been assigned to this genome yet.

Return type Optional[GeneticAlgorithmConfig]

deep_copy()
Makes an exact/deep copy of the genome.

Return type FixedTopologyGenome

Returns An exact/deep copy of the genome. It has the same topology and connections weights
of the original genome.

distance(other)
Calculates the distance between the two genomes.

The distance is calculated based on the euclidean distance (the L2 norm of the difference) between corre-
spondent weight matrices of the genomes layers.

Parameters other (FixedTopologyGenome) – The other fixed-topology genome.

Return type float

Returns A float representing the distance between the two genomes. The lower the distance, the
more similar the two genomes are.

property input_shape
The input shape expected by the genome’s input layer.

Return type Optional[Tuple[int, . . . ]]

mate(other)
Mates two genomes to produce a new genome (offspring).

Implements the sexual reproduction between a pair of genomes. The new genome inherits information
from both parents.

Currently available mating modes for individual layers:

• mating.exchange_weights_mating();

• mating.exchange_units_mating();

• mating.weights_avg_mating().

The mating mode of a layer is specified during its instantiation.

Parameters other (Any) – The second genome . If it’s not compatible for mating with the
current genome (self ), an exception will be raised.

Return type FixedTopologyGenome

Returns A new genome (the offspring born from the sexual reproduction between the current
genome and the genome passed as argument).

Raises IncompatibleGenomesError – If the genome passed as argument to other is
incompatible with the current genome (self ).

mutate_weights()
Randomly mutates the weights of the genome’s connections.
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Return type None

process(x)
Feeds the given input to the neural network encoded by the genome.

Parameters x (Any) – The input(s) to be fed to the neural network encoded by the genome.
Usually a NumPy ndarray or a TensorFlow tensor.

Return type Any

Returns The output of the network. Usually a NumPy ndarray or a TensorFlow tensor.

Raises InvalidInputError – If the shape of X doesn’t match the input shape expected by
the network.

random_copy()
Makes a deep copy of the genome, but with random weights.

Return type FixedTopologyGenome

Returns A deep copy of the genome with the same topology of the original genome, but random
connections weights.

reset()
This method doesn’t do anything.

In this implementation, the default fixed topology networks do not need to reset any of its internal states
before the start of a new generation.

Return type None

visualize(show=True, to_file='genome.png', **kwargs)
Utility method for visualizing the genome’s neural network.

This currently only works with genomes that use TensorFlow layers.

Todo: Make it possible to visualize neurons and connections.

show
Whether to show the generated image or not.

Type bool

to_file
Path in which the image file will be saved to.

Type str

\*\*kwargs
Optional named arguments to be passed to tensorflow.keras.utils.plot_model().

Return type Image

Returns The generated PIL.Image.Image object.
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Module contents

Imports core names of nevopy.fixed_topology .

6.1.2 nevopy.genetic_algorithm package

Submodules

nevopy.genetic_algorithm.config module

This module implements the FixedTopologyConfig class, used to handle the settings of NEvoPy’s fixed-topology
neuroevolutionary algorithms.

class nevopy.genetic_algorithm.config.GeneticAlgorithmConfig(file_pathname=None,
**kwargs)

Bases: object

Stores the settings to be used by GeneticPopulation.

Individual configurations can be ignored (default values will be used), set in the arguments of this class con-
structor or written in a file (pathname passed as an argument).

Some parameters/attributes related to mutation chances expects a tuple with two floats, indicating the minimum
and the maximum chance of the mutation occurring. A value within the given interval is chosen based on the
“mass extinction factor” (mutation chances increases as the number of consecutive generations in which the
population has shown no improvement increases). If you want a fixed mutation chance, just place the same
value on both positions of the tuple.

Todo:

• Implementation: loading settings from a config file.

• Specify the config file organization in the docs.

Parameters

• file_pathname (Optional[str]) – The pathname of a file from where the settings
should be loaded.

• **kwargs – Accepts any of the attributes listed for this class. When the value of an
attribute isn’t passed as argument, a default value is used. The default values are defined in
GeneticAlgorithmConfig.ATTRIBUTES.

mutation_chance
Chance for a mutation to occur in a new-born genome.

Type Tuple[float, float]

weight_mutation_chance
Chance of each individual connection weight of a newborn genome being perturbed during mutation.

Type Tuple[float, float]

weight_perturbation_pc
Maximum absolute percentage of a weight’s value that can be added to it during mutation. When a con-
nection weight is being mutated, it has a chance of being perturbed. This can me summarized as follows
(p is the weight perturbation percentage): current weight <- current weight * (1 + random[-p, p]).
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Type Tuple[float, float]

weight_reset_chance
Chance, during mutation, for a weight to have its value reset (in which case a new random value is assigned
to it).

Type Tuple[float, float]

new_weight_interval
When a weight is reset, it will be assigned with a random value in this interval.

Type Tuple[float, float]

weak_genomes_removal_pc
Percentage of the weakest genomes (those with the lowest fitness) to be removed before reproduction
occurs.

Type float

mating_chance
Chance of a genome reproducing sexually, i.e., by mating / crossing-over with another genome. Decreas-
ing this value increases the chance of a genome reproducing asexually, through binary fission (copy +
mutation).

Type float

mating_mode
How the exchange of genetic material is supposed to happen during a sexual reproduction between two
genomes. Options: “weights_mating” and “exchange_layers” (the new genome inherits full layers from
its parents).

Type str

rank_prob_dist_coefficient
Coefficient 𝛼 used to calculate the probability distribution used to select genomes for reproduction. Basi-
cally, the value of this constant can be interpreted as follows: the genome with the highest fitness has ×𝛼
more chance of being selected for reproduction than the second best genome, which, in turn, has ×𝛼 more
chance of being selected than the third best genome, and so forth. This approach to reproduction is called
rank-based selection.

Type float

predatism_chance
Chance of a newborn genome being “predated”, in which case its replaced by a new randomly generated
genome. This increases the genetic variability in the population.

Type float

species_distance_threshold
Minimum distance between two genomes for them to be considered as being of the same species. A
lower threshold will make new species easier to appear, increasing the number of species throughout the
evolutionary process.

Type float

species_elitism_threshold
Species with a number of members superior to this threshold will have one or more of their fittest members
copied unchanged to the next generation.

Type int
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elitism_pc
Percentage of the genomes of a big enough species to be copied unchanged to the next generation. The
number of copied genomes is equal to max(1, ceil(species_size * elitism_pc)).

Type float

species_no_improvement_limit
If a species doesn’t show improvement in its best fitness for this amount of generations, it will be removed
from the species’ list of the population.

Type int

mass_extinction_threshold
If the population’s fitness doesn’t improve for this amount of generations, the whole population, with the
exception of its fittest genome, will be extinct/deleted and replaced by new randomly generated genomes.
Here the fitness of a population in a given generation is considered to be equal to the fitness of its fittest
genome in that generation. As the number of generations without improvements increases, the mutations
chances (as specified in the settings) also increase. This simulates the increase of the evolutionary pressure
acting on the population.

Type int

maex_improvement_threshold_pc
It’s considered that the fitness of a population improved if, and only if, the population’s fitness had an
increase equivalent to this percentage. As an example, suppose that the fitness 𝑓𝑔 of a population on
generation 𝑔 is 100 and that this parameter is set to 0.05 (5%). The fitness 𝑓𝑔+1 of the population in the
next generation (g + 1) is considered to have improved if, and only if, 𝑓𝑔+1 ≥ 1.05 · 𝑓𝑔 = 105.

Type float

ATTRIBUTES = {'elitism_pc': 0.03, 'interspecies_mating_chance': 0.05, 'maex_improvement_threshold_pc': 0.03, 'mass_extinction_threshold': 15, 'mating_chance': 0.7, 'mating_mode': 'weights_mating', 'mutation_chance': (0.6, 0.9), 'new_weight_interval': (-2, 2), 'predatism_chance': 0.1, 'rank_prob_dist_coefficient': 1.75, 'species_distance_threshold': 1.75, 'species_elitism_threshold': 5, 'species_no_improvement_limit': 15, 'weak_genomes_removal_pc': 0.5, 'weight_mutation_chance': (0.5, 1), 'weight_perturbation_pc': (0.05, 0.5), 'weight_reset_chance': (0.05, 0.5)}
Attributes supported by the class and their default values. Each attribute can passed as a kwarg in the class’
constructor or be specified in a config file. Attributes not specified will be initialized with a default value.

MAEX_KEYS = {'mutation_chance', 'weight_mutation_chance', 'weight_perturbation_pc', 'weight_reset_chance'}
Name of the attributes whose values change according to the mass extinction counter (type: Tuple[float,
float]).

property maex_counter
Returns the current value stored in the config’s mass extinction counter.

Return type int

update_mass_extinction(maex_counter)
Updates the mutation chances based on the current value of the mass extinction counter (generations
without improvement).

Parameters maex_counter (int) – Current value of the mass extinction counter (genera-
tions without improvement).

Return type None
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nevopy.genetic_algorithm.population module

Implements a generalizable genetic algorithm that can be used by different neuroevolution algorithms.

class nevopy.genetic_algorithm.population.DefaultSpecies(creation_gen, mem-
bers=None)

Bases: object

Represents a species.

In the context of a genetic algorithm, a species is a set of similar (to some extent) genomes that can mate in
order to generate offspring.

Parameters

• creation_gen (int) – Number of the generation in which the species is being created.

• members (Optional[List[BaseGenome]]) – Initial members of the species.

representative
Genome used to represent the species.

Type Optional[BaseGenome]

members
List with the genomes that belong to the species.

Type List[BaseGenome]

last_improvement
Generation in which the species last showed improvement of its fitness. The species fitness in a given
generation is equal to the fitness of the species fittest genome on that generation.

Type int

best_fitness
The last calculated fitness of the species fittest genome.

Type Optional[float]

avg_fitness()
Returns the average fitness of the species genomes.

Return type float

compatibility(genome)
Returns a float indicating the compatibility of the given genome with the species.

Return type float

fittest()
Returns the fittest member of the species.

Return type BaseGenome

update_representative()
Chooses a new representative for the species.

This implementation follows NEAT, so a random member of the species is chosen as its representative.

Return type None
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class nevopy.genetic_algorithm.population.GeneticPopulation(size, base_genome,
config=None,
process-
ing_scheduler=None,
speciation=False)

Bases: nevopy.base_population.BasePopulation

Implementation of a generalizable genetic algorithm.

This class implements a generalizable genetic algorithm that can be used by different neuroevolution algorithms.
The algorithm is used to evolve a population of genomes (instances of a subclass of BaseGenome).

This class does not make strong assumptions about the type of genome it is dealing with, so it does not take into
account the type of encoding the genome uses or how it processes input. This allows the implemented algorithm
to be used in a wide range of scenarios.

The implemented genetic algorithm uses (optionally) a speciation scheme similar to the one used by the NEAT
algorithm [SM02]. The computation of the distance between the genomes, however, is not implemented here,
but on the subclass that implements class:.BaseGenome.

When subclassing this class, you probably won’t need to override the GeneticPopulation.evolve()
method, which contains the main loop of the genetic algorithm.

To better understand the default behaviour of the algorithm, it’s recommended to read the docs of the methods
speciate() and reproduction().

Example

Example using FixedTopologyGenome as the base genome type:

def fitness_func(genome):
"""
Function that takes a genome as input and returns the genome's
fitness (a float) as output.
"""
# ...

# Genome that's gonna serve as a model for your population:
base_genome = FixedTopologyGenome(

layers=[TFDenseLayer(32, activation="relu"),
TFDenseLayer(1, activation="sigmoid")],

input_shape=my_input_shape, # shape of your input samples
)

# Creating and evolving a population:
population = GeneticPopulation(size=100,

base_genome=base_genome)
history = population.evolve(generations=100,

fitness_function=fitness_func)

# Visualizing the evolution of the population's fitness:
history.visualize()

# Retrieving and visualizing the fittest genome of the population:
best_genome = population.fittest()
best_genome.visualize()

6.1. Subpackages 29



NEvoPy

Parameters

• size (int) – Number of genomes (constant) in the population.

• base_genome (BaseGenome) – Instance of a subclass of BaseGenome that will serve
as a model/base for all the population’s genomes.

• config (Optional[GeneticConfig]) – The settings of the evolutionary process. If
None, the default settings will be used.

• processing_scheduler (Optional[ProcessingScheduler]) – Process-
ing scheduler to be used by the population. If None, a new instance of
RayProcessingScheduler will be used as scheduler.

• speciation (bool) – Whether the genetic algorithm used to evolve the genomes should
use speciation or not.

DEFAULT_SCHEDULER
alias of nevopy.processing.ray_processing.RayProcessingScheduler

property config
Config object that stores the settings used by the population.

evolve(generations, fitness_function, callbacks=None, verbose=2, **kwargs)
Evolves the population using a genetic algorithm.

Main method of this class. It contains the main loop of the genetic algorithm used to evolve the population
of genomes.

Parameters

• generations (int) – Number of generations for the algorithm to run. A generation is
completed when all the population’s genomes have been processed and reproduction and
speciation have occurred.

• fitness_function (Callable[[BaseGenome], float]) – Fitness function
to be used to evaluate the fitness of individual genomes. It must receive a genome as input
and produce a float (the genome’s fitness) as output.

• callbacks (Optional[List[Callback]]) – List with instances of Callback
that will be called during the evolutionary session. By default, a History callback is al-
ways included in the list. A CompleteStdOutLogger or a SimpleStdOutLogger
might also be included, depending on the value passed to the verbose param.

• verbose (int) – Verbose level (logging on stdout). Options: 0 (no verbose), 1 (light
verbose) and 2 (heavy verbose).

Return type History

Returns A History object containing useful information recorded during the evolutionary
process.

static generate_offspring(args)
Given one or two genomes (parents), generates a new genome.

Parameters args (Tuple[BaseGenome, Optional[BaseGenome], bool]) – Tu-
ple containing a genome in its first index, another genome or None in its second index and a
bool in its third index. The bool indicates whether predatism will occur or not. If it’s True,
then the new genome will be randomly generated. If the second index is another genome,
then the new genome will be generated by mating the two given genomes (sexual reproduc-
tion). If its None, the new genome will be a mutated copy (asexual reproduction / binary
fission) of the genome in the first index.

30 Chapter 6. nevopy package



NEvoPy

Return type BaseGenome

Returns A new genome.

mass_extinction(best_genome)
All the genomes in the population (except for the best genome) are replaced by new random genomes
(random copies of the population’s base genome).

Return type None

reproduction()
Handles the reproduction of the population’s genomes.

First, the fittest genomes of each species with more than a pre-defined number of individuals are selected
to be copied unchanged to the next generation (elitism). Next, the least fit genomes of each species are
discarded (reverse elitism). After that, the number of descendants of each species is calculated. The
number of offspring assigned to each species is proportional to the average fitness of the species (roulette
wheel selection). Finally, the reproduction of individuals of the same species (and, on rare occasions,
between genomes of different species as well) occurs.

Genomes with a higher fitness have a higher chance of leaving offspring. Within a species, the chance of a
genome reproducing is given by the position it occupies in the species fitness rank (rank-based selection).
This means that the reproduction chance of a genome is not directly calculated from the genome’s fitness,
but rather from how well positioned is the genome in the fitness rank.

Some of the behaviour described above follows the original description of the NEAT algorithm [SM02].

Newborn genomes have a chance of being “eaten by a predator”, in which case they are replaced by new
randomly generated genomes. This technique is called predatism.

Return type int

Returns Number of preys (individuals replaced by a random genome).

speciate(current_generation)
Divides the population’s genomes into species.

The algorithm follows the speciation scheme of the NEAT algorithm [SM02]:

“Each existing species is represented by a random genome inside the species from the previous generation.
A given genome g in the current generation is placed in the first species in which g is compatible with the
representative genome of that species. This way, species do not overlap. If g is not compatible with any
existing species, a new species is created with g as its representative.” - [SM02]

The degree of compatibility between two genomes is given by their distance, calculated by the
BaseGenome.distance() method. The lower the distance the more compatible two genomes
are. Two genomes are considered compatible if their distance is lower than a pre-defined number
(GeneticAlgorithmConfig.species_distance_threshold).

Species that haven’t improved their fitness for a pre-defined number of generations are extinct, i.e., they
are removed from the population and aren’t considered for the speciation process.

Return type None
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Module contents

Imports core names of nevopy.genetic_algorithms.

6.1.3 nevopy.neat package

Submodules

nevopy.neat.config module

This module implements the NeatConfig class, used to handle the settings of the NEAT algorithm.

class nevopy.neat.config.NeatConfig(file_pathname=None, **kwargs)
Bases: nevopy.genetic_algorithm.config.GeneticAlgorithmConfig

Stores the settings of the NEAT algorithm.

Individual configurations can be ignored (default values will be used), set in the arguments of this class con-
structor or written in a file (pathname passed as an argument).

Some parameters/attributes related to mutation chances expects a tuple with two floats, indicating the minimum
and the maximum chance of the mutation occurring. A value within the given interval is chosen based on the
“mass extinction factor” (mutation chances increases as the number of consecutive generations in which the
population has shown no improvement increases). If you want a fixed mutation chance, just place the same
value on both positions of the tuple.

Parameters

• file_pathname (Optional[str]) – The pathname of a file from where the settings
should be loaded.

• **kwargs – Accepts any of the attributes listed for this class. When the value of an
attribute isn’t passed as argument, a default value is used. The default values are defined in
NeatConfig.ATTRIBUTES.

out_nodes_activation
Activation function to be used by the output nodes of the networks. It should receive a float as input and
return a float (the resulting activation) as output.

Type Callable[[float], float]

hidden_nodes_activation
Activation function to be used by the hidden nodes of the networks. It should receive a float as input and
return a float (the resulting activation) as output.

Type Callable[[float], float]

bias_value
Constant activation value to be used by the bias nodes. If None, bias nodes won’t be used.

Type Optional[float]

weak_genomes_removal_pc
Percentage of the least fit individuals to be deleted from the population before the reproduction step.

Type float

weight_mutation_chance
Tuple containing, respectively, the minimum and maximum chance of mutating a connection gene.

Type Tuple[float, float]
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new_node_mutation_chance
Tuple containing, respectively, the minimum and maximum chance of a new hidden node being added to
a newly born genome.

Type Tuple[float, float]

new_connection_mutation_chance
Tuple containing, respectively, the minimum and maximum chance of a new connection being added to a
newly born genome.

Type Tuple[float, float]

enable_connection_mutation_chance
Tuple containing, respectively, the minimum and maximum chance of enabling a disabled connection in a
newly born genome.

Type Tuple[float, float]

disable_inherited_connection_chance
During a sexual reproduction between two genomes, this constant specifies the chance of a connection in
the newly born genome being disabled if it’s disabled on at least one of the parent genomes.

Type float

mating_chance
Chance of a genome reproducing sexually, i.e., by mating / crossing-over with another genome. Decreas-
ing this value increases the chance of a genome reproducing asexually, through binary fission (copy +
mutation).

Type float

interspecies_mating_chance
Chance for a sexual reproduction (mating / cross-over) to be between genomes of different species.

Type float

rank_prob_dist_coefficient
Coefficient 𝛼 used to calculate the probability distribution used to select genomes for reproduction. Basi-
cally, the value of this constant can be interpreted as follows: the genome, within a species, with the highest
fitness has ×𝛼 more chance of being selected for reproduction than the second best genome, which, in turn,
has ×𝛼 more chance of being selected than the third best genome, and so forth. This approach to repro-
duction is called rank-based selection. Note that this is applied to individuals within the same species.

Type float

weight_perturbation_pc
Tuple containing, respectively, the minimum and maximum value for the maximum absolute percentage
of the perturbation value of the weights. When a connection gene is being mutated, it has a chance of
having a value (the perturbation) added to its weight. This can me summarized as follows (p is the weight
perturbation percentage): current weight <- current weight * (1 + random[-p, p]).

Type Tuple[float, float]

weight_reset_chance
Tuple containing, respectively, the minimum and maximum chance of resetting a connection’s weight
during the mutation of a connection gene. The reset connection is assigned a new random weight.

Type Tuple[float, float]

new_weight_interval
Interval from which the value of a new random connection weight will be picked from.

Type Tuple[float, float]
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mass_extinction_threshold
If the population’s fitness doesn’t improve for this amount of generations, the whole population, with
the exception of its most fit genome, will be extinct/deleted and replaced by new randomly generated
genomes. Here the fitness of a population in a given generation is considered to be equal to the fitness of
the population’s most fit genome in that generation. As the number of generations without improvements
increases, the mutations chances (as specified in the settings) also increase. This simulates the increase of
the evolutionary pressure acting on the population.

Type int

maex_improvement_threshold_pc
It’s considered that the fitness of a population improved if, and only if, the population’s fitness had an
increase equivalent to this percentage. As an example, suppose that the fitness 𝑓𝑔 of a population on
generation 𝑔 is 100 and that this parameter is set to 0.05 (5%). The fitness 𝑓𝑔+1 of the population in the
next generation (g + 1) is considered to have improved if, and only if, 𝑓𝑔+1 ≥ 1.05 · 𝑓𝑔 = 105.

Type float

infanticide_output_nodes
If True, newborn genomes with no enabled connections incoming to one or more output nodes will be
deleted and replaced by a new randomly generated genome. Note that the term “infanticide” is being used
here without any political or cultural connotation. It’s used because it is the word that best describe the
phenomenon at hand and is widely used in the scientific field of zoology (see this article).

Type bool

infanticide_input_nodes
If True, newborn genomes with no enabled connections leaving one or more input nodes will be deleted and
replaced by a new randomly generated genome. Note that the term “infanticide” is being used here without
any political or cultural connotation. It’s used because it is the word that best describe the phenomenon at
hand and is widely used in the scientific field of zoology (see this article).

Type bool

random_genome_bonus_nodes
Let h_bonus be the argument passed to this parameter and h_max the maximum number of hidden nodes
within individuals of the population. When a random genome is created to replace one of the population’s
genomes, the number of hidden nodes in it will be a random number picked from the interval [0, h_max +
h_bonus].

Type int

random_genome_bonus_connections
The same as NeatConfig.random_genome_max_bonus_hnodes, except it refers to the number
of connections involving hidden nodes in the new randomly generated genome.

Type int

excess_genes_coefficient
Used in the formula that calculates the distance between two genomes. It’s the 𝑐1 coefficient in (6.1).

Type float

disjoint_genes_coefficient
Used in the formula that calculates the distance between two genomes. It’s the 𝑐2 coefficient in (6.1).

Type float

weight_difference_coefficient
Used in the formula that calculates the distance between two genomes. It’s the 𝑐3 coefficient in (6.1).

Type float
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species_distance_threshold
Minimum distance, as calculated by (6.1), between two genomes for them to be considered as being of the
same species. A lower threshold will make new species easier to appear, increasing the number of species
throughout the evolutionary process.

Type float

species_elitism_threshold
Species with a number of members superior to this threshold will have their fittest member copied un-
changed to the next generation.

Type int

species_no_improvement_limit
If a species doesn’t show improvement in its best fitness for this amount of generations, it will be extinct.

Type int

reset_innovations_period
If None, the innovation IDs of the new genes will never be reset. If an int, the innovation IDs will be reset
periodically with a period (number of generations passed) equal to the value specified. As long as the id
handler isn’t reset, a hidden node can’t be inserted more than once in a connection between two given
nodes.

Type Optional[int]

allow_self_connections
Whether to allow or not connections connecting a node to itself. If a node is connected to itself, it considers
its last output when calculating its new output.

Type bool

initial_node_activation
Initial activation value cached by a node when it’s created or reset.

Type float

ATTRIBUTES = {'allow_self_connections': True, 'bias_value': 1, 'disable_inherited_connection_chance': 0.75, 'disjoint_genes_coefficient': 1, 'enable_connection_mutation_chance': (0.03, 0.3), 'excess_genes_coefficient': 1, 'hidden_nodes_activation': <function steepened_sigmoid>, 'infanticide_input_nodes': True, 'infanticide_output_nodes': True, 'initial_node_activation': 0, 'interspecies_mating_chance': 0.05, 'maex_improvement_threshold_pc': 0.03, 'mass_extinction_threshold': 15, 'mating_chance': 0.7, 'new_connection_mutation_chance': (0.03, 0.3), 'new_node_mutation_chance': (0.03, 0.3), 'new_weight_interval': (-2, 2), 'out_nodes_activation': <function steepened_sigmoid>, 'random_genome_bonus_connections': -2, 'random_genome_bonus_nodes': -2, 'rank_prob_dist_coefficient': 1.75, 'reset_innovations_period': 5, 'species_distance_threshold': 2, 'species_elitism_threshold': 5, 'species_no_improvement_limit': 15, 'weak_genomes_removal_pc': 0.75, 'weight_difference_coefficient': 0.5, 'weight_mutation_chance': (0.7, 0.9), 'weight_perturbation_pc': (0.1, 0.4), 'weight_reset_chance': (0.1, 0.3)}
Attributes supported by the class and their default values. Each attribute can passed as a kwarg in the class’
constructor or be specified in a config file. Attributes not specified will be initialized with a default value.

MAEX_KEYS = {'enable_connection_mutation_chance', 'new_connection_mutation_chance', 'new_node_mutation_chance', 'weight_mutation_chance', 'weight_perturbation_pc', 'weight_reset_chance'}
Name of the attributes whose values change according to the mass extinction counter (type: Tuple[float,
float]).

nevopy.neat.genes module

Implements the nodes (neurons) and edges (connections) of a genome.

class nevopy.neat.genes.ConnectionGene(cid, from_node, to_node, weight, enabled=True)
Bases: object

A connection between two nodes.

A connection gene represents/encodes a connection (edge) between two nodes (neurons) of a neural network
(phenotype of a genome).

Parameters

• cid (int) – The innovation number of the connection. As described in the original NEAT
paper [SM02], this serves as a historical marker for the gene, helping to identify homologous
genes.
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• from_node (NodeGene) – Node from where the connection is originated. The source
node of the connection.

• to_node (NodeGene) – Node to where the connection is headed. The destination node
of the connection.

• weight (float) – The weight of the connection.

• enabled (bool) – Whether the initial state of the newly created connection should en-
abled or disabled.

weight
The weight of the connection.

Type float

enabled
Whether the connection is enabled or not. A disabled connection won’t be considered during the compu-
tations of the neural network.

Type bool

property from_node
Node where the connection is originated (source node).

Return type NodeGene

property id
Innovation number of the connection gene.

As described in the original NEAT paper [SM02], this value serves as a historical marker for the gene,
helping to identify homologous genes. Although must of the identification is based on the nodes that form
the connection, this ID is helpful to increase the speed of certain comparisons.

Return type int

self_connecting()
Returns True if the connection is connecting a node to itself and False otherwise.

Return type bool

property to_node
Node to where the connection is headed (destination node).

Return type NodeGene

exception nevopy.neat.genes.ConnectionIdException
Bases: Exception

Indicates that an attempt has been made to assign a new ID to a connection gene that already has an ID.

class nevopy.neat.genes.NodeGene(node_id, node_type, activation_func, initial_activation)
Bases: object

A gene that represents/encodes a neuron (node) in a neural network.

A NodeGene is the portion of a NeatGenome that encodes a neuron (node) of the neural network encoded
by the NeatGenome. It has an activation function, which is applied to inputs received from other nodes of the
network.

Parameters

• node_id (int) – The node’s identifier / innovation number.

• node_type (NodeGene.Type) – The node’s type.
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• activation_func (Callable[[float], float]) – Activation function to be
used by the node. It should receive a float as input and return a float (the resulting acti-
vation) as output.

• initial_activation (float) – initial value of the node’s activation (used when pro-
cessing recurrent connections between nodes).

in_connections
List with the connections (ConnectionGene) leaving this node, i.e., connections that have this node as
the source.

Type List[ConnectionGene]

out_connections
List with the connections (ConnectionGene) coming to this node, i.e., connections that have this node
as the destination.

Type List[ConnectionGene]

class Type(value)
Bases: enum.Enum

Specifies the possible types of node genes.

BIAS = 1

HIDDEN = 2

INPUT = 0

OUTPUT = 3

activate(x)
Applies the node’s activation function to the given input.

The node’s activation value, i.e., the node’s cached output, is updated by this call and can be later be
accessed through the property activation.

Return type None

Returns None. The node’s output is updated internally.

property activation
The node’s cached activation value, i.e., the node’s output when it was last processed.

Return type float

property id
Innovation ID of the gene.

This ID is used to mate genomes and to calculate their difference.

“The innovation numbers are historical markers that identify the original historical ancestor of each gene.
New genes are assigned new increasingly higher numbers.” - [SM02]

Return type int

reset_activation()
Resets the node’s activation value (it’s cached output) to its initial value.

Return type None

simple_copy()
Makes and returns a simple copy of this node.

Wraps a call to this class’ constructor.
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The copied node shares the same values for all the attributes of the source node, except for the connections.
The copied node is created without any connections.

Return type NodeGene

Returns A copy of this node without any connection.

property type
Type of the node (input, bias, hidden or output).

Return type Type

exception nevopy.neat.genes.NodeIdException
Bases: Exception

Indicates that an attempt has been made to assign a new ID to a gene node that already has an ID.

exception nevopy.neat.genes.NodeParentsException
Bases: Exception

Indicates that an attempt has been made to get the parents of a non-hidden node.

nevopy.neat.genes.align_connections(con_list1, con_list2, print_alignment=False)
Aligns the matching connection genes of the given lists.

In the context of NEAT [SM02], aligning homologous connections genes is required both to compare the simi-
larity of a pair of genomes and to perform sexual reproduction. Two connection genes are said to match or to be
homologous if they have the same innovation ID, meaning that they represent the same structure.

Genes that do not match are either disjoint or excess, depending on whether they occur within or outside the
range of the other parent’s innovation numbers. They represent a structure that is not present in the other genome.

Parameters

• con_list1 (List[ConnectionGene]) – The first list of connection genes.

• con_list2 (List[ConnectionGene]) – The second list of connection genes.

• print_alignment (bool) – Whether to print the generated alignment or not. Used for
debugging.

Return type Tuple[List[Optional[ConnectionGene]], List[Optional[ConnectionGene]]]

Returns

A tuple containing two lists of the same size. Index 0 corresponds to the first list and index 1 to
the second list. The returned lists contain connection genes or None. The order of the genes is
preserved in the returned lists (but not their indices!).

If, given a position, there are two genes (one in each list), the genes match. On the other hand,
if, in the position, there is only one gene (on one of the lists) and a None value (on the other list),
the genes are either disjoint or excess.
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nevopy.neat.genomes module

Implements the genome and its main operations.

A genome is a collection of genes that encode a neural network (the genome’s phenotype). In this implementation,
there is no distinction between a genome and the network it encodes. In NEAT, the genome is the entity subject to
evolution.

exception nevopy.neat.genomes.ConnectionExistsError
Bases: Exception

Exception that indicates that a connection between two given nodes already exists.

exception nevopy.neat.genomes.ConnectionToBiasNodeError
Bases: Exception

Exception that indicates that an attempt has been made to create a connection containing a bias node as destina-
tion.

class nevopy.neat.genomes.FixTopNeatGenome(fito_genome, num_neat_inputs,
num_neat_outputs, config, ini-
tial_neat_connections=True)

Bases: nevopy.neat.genomes.NeatGenome

Integration of a NEAT genome with a fixed topology genome.

This class defines a new type of NEAT genome that integrates the default NeatGenome with a
:class:.FixedTopologyGenome`. It can be used with NeatPopulation.

When an input is received, it’s first processed by the layers of the fixed topology genome. The output is, then,
processed using NEAT, which generates the final output.

Note: This class is useful when the inputs that will be fed to the genome have high dimensions. Since NEAT
doesn’t scale well with such lengthy inputs (like images), a fixed topology genome (that can contain, for instance,
convolutional layers) can be used to reduce the dimensionality of the input before feeding it to NEAT’s nodes.

Parameters

• fito_genome (FixedTopologyGenome) – Instance of FixedTopologyGenome
to be used to pre-process the inputs. It will also be evolved.

• num_neat_inputs (int) – Length of the flattened outputs of the fixed topology
genome. It’s also the number of input nodes of the NEAT genome.

• num_neat_outputs (int) – Number of output nodes of the NEAT genome.

• config (NeatConfig) – Settings of the current evolutionary session.

• initial_neat_connections (bool) – Whether to create connections connecting
each input node of the NEAT genome to each of its output nodes.

deep_copy()
Makes an exact/deep copy of the genome.

All the nodes and connections (including their weights) of the parent genome are copied to the new
genome.

Return type FixTopNeatGenome

Returns An exact/deep copy of the genome.
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distance(other)
Sums, to the default distance calculated by NeatGenome.distance(), the sum of the absolute differ-
ence between the fixed topology layers weights.

Return type float

mate(other)
Mates two genomes to produce a new genome (offspring).

Sexual reproduction. Follows the idea described in the original paper of the NEAT algorithm:

“When crossing over, the genes in both genomes with the same innovation numbers are lined up. These
genes are called matching genes. (. . . ). Matching genes are inherited randomly, whereas disjoint genes
(those that do not match in the middle) and excess genes (those that do not match in the end) are inherited
from the more fit parent. (. . . ) [If the parents fitness are equal] the disjoint and excess genes are also
inherited randomly. (. . . ) there’s a preset chance that an inherited gene is disabled if it is disabled in either
parent.” - [SM02]

Parameters other (NeatGenome) – The second genome. Currently, NeatGenome is only
compatible for mating with instances of NeatGenome or of one of its subclasses.

Return type NeatGenome

Returns A new genome (the offspring born from the sexual reproduction between the current
genome and the genome passed as argument.

Raises IncompatibleGenomesError – If the genome passed as argument to other is
incompatible with the current genome (self ).

mutate_weights()
Randomly mutates the weights of the genome’s connections.

Each connection gene in the genome has a chance to be perturbed, reset or to remain unchanged.

Return type None

process(x)
Feeds the input to the fixed topology genome and uses the output as input to the NEAT genome.

Return type ndarray

random_copy()
Makes a deep copy of the genome, but with random weights.

Return type FixTopNeatGenome

Returns A deep copy of the genome with the same topology of the original genome, but random
connections weights.

simple_copy()
Makes a simple copy of the genome.

Wraps a call to this class’ constructor. The new genome’s is initialized without a fixed topology genome
(fito_genome) - the value of this attribute is None.

Return type FixTopNeatGenome

Returns A copy of the genome without any of its connections (including the ones between input
and output nodes) and hidden nodes. The attribute fito_genome is set to None.

class nevopy.neat.genomes.NeatGenome(num_inputs, num_outputs, config, ini-
tial_connections=True)

Bases: nevopy.base_genome.BaseGenome

Linear representation of a neural network’s connectivity.
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In the context of NEAT, a genome is a collection of genes that encode a neural network (the genome’s pheno-
type). In this implementation, there is no distinction between a genome and the network it encodes. A genome
processes inputs based on its nodes and connections in order to produce an output, emulating a neural network.

Note: The instances of this class are the entities subject to evolution by the NEAT algorithm.

Note: The encoded networks are Graph Neural Networks (GNNs), connectionist models that capture the
dependence of graphs via message passing between the nodes of graphs.

Note: When declaring a subclass of this class, you should always override the methods simple_copy(),
deep_copy() and random_copy(), so that they return an instance of your subclass and not of
NeatGenome. It’s recommended (although optional) to also override the methods distance() and
mate().

Parameters

• num_inputs (int) – Number of input nodes in the network.

• num_outputs (int) – Number of output nodes in the network.

• config (NeatConfig) – Settings of the current evolution session.

• initial_connections (bool) – If True, connections between the input nodes and the
output nodes of the network will be created.

species_id
Indicates the species to which the genome belongs.

Type int

fitness
The last calculated fitness of the genome.

Type float

adj_fitness
The last calculated adjusted fitness of the genome.

Type float

hidden_nodes
List with all the node genes of the type NodeGene.Type.HIDDEN in the genome.

Type list of NodeGene

connections
List with all the connection genes in the genome.

Type list of ConnectionGene

_existing_connections_dict
Used as a fast lookup table to consult existing connections in the network. Given a node N, it maps N’s ID
to the IDs of all the nodes that have a connection with N as the source.

Type Dict[int, Set]
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add_connection(cid, src_node, dest_node, enabled=True, weight=None)
Adds a new connection gene to the genome.

Parameters

• cid (int) – ID of the connection. It’s used as a historical marker of the connection’s
creation, acting as an “innovation number”.

• src_node (NodeGene) – Node from where the connection leaves (source node).

• dest_node (NodeGene) – Node to where the connection is headed (destination node).

• enabled (bool) – Whether the new connection should be enabled or not.

• weight (Optional[float]) – The weight of the connection. If None, a random
value (within the interval specified in the settings) will be chosen.

Raises

• ConnectionExistsError – If the connection src_node->dest_node already exists in
the genome.

• ConnectionToBiasNodeError – If dest_node is an input or bias node (nodes of
these types do not process inputs!).

Return type None

add_random_connection(id_handler)
Adds a new connection between two random nodes in the genome.

This is an implementation of the add connection mutation, described in the original NEAT paper [SM02].

Parameters id_handler (IdHandler) – ID handler that will be used to assign an ID to
the new connection. The handler’s internal cache of existing connections will be updated
accordingly.

Return type Optional[Tuple[NodeGene, NodeGene]]

Returns A tuple containing the source node and the destination node of the connection, if a new
connection was successfully created. None, if there is no space in the genome for a new
connection.

add_random_hidden_node(id_handler)
Adds a new hidden node to the genome in a random position.

This method implements the add node mutation procedure described in the original NEAT paper:

“An existing connection is split and the new node placed where the old connection used to be. The old
connection is disabled and two new connections are added to the genome. The new connection leading
into the new node receives a weight of 1, and the new connection leading out receives the same weight as
the old connection.” - [SM02]

Only currently enabled connections are considered eligible to “host” the new hidden node.

Parameters id_handler (IdHandler) – ID handler that will be used to assign an ID to the
new hidden node. The handler’s internal cache of existing nodes and connections will be
updated accordingly.

Return type Optional[NodeGene]

Returns The new hidden node, if it was successfully created. None if it wasn’t possible to find
a connection to “host” the new node. This usually happens when the ID handler hasn’t been
reset in a while.
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property config
Settings of the current evolutionary session.

If None, a config object hasn’t been assigned to this genome yet.

Return type Any

connection_exists(src_id, dest_id)
Checks whether a connection between the given nodes exists.

Parameters

• src_id (int) – ID of the connection’s source node.

• dest_id (int) – ID of the connection’s destination node.

Return type bool

Returns True if the specified connection exists in the genome’s network and False otherwise.

deep_copy()
Makes an exact/deep copy of the genome.

All the nodes and connections (including their weights) of the parent genome are copied to the new
genome.

Return type NeatGenome

Returns An exact/deep copy of the genome.

distance(other)
Calculates the distance between two genomes.

The shorter the distance between two genomes, the greater the similarity between them is. In the context
of NEAT, the similarity between genomes increases as:

1) the number of matching connection genes increases;

2) the absolute difference between the matching connections weights decreases;

The distance between genomes is used for speciation and for sexual reproduction (mating).

The formula used is shown below. It’s the same as the one presented in the original NEAT paper [SM02].
All the coefficients are configurable.

𝛿 = 𝑐1 ·
𝐸

𝑁
+ 𝑐2 ·

𝐷

𝑁
+ 𝑐3 ·𝑊 (6.1)

Parameters other (NeatGenome) – The other genome (an instance of NeatGenome or one
of its subclasses).

Return type float

Returns The distance between the genomes.

enable_random_connection()
Randomly activates a disabled connection gene.

Return type None

info()
Returns a string with the genome’s nodes activations and connections. Used mostly for debugging pur-
poses.

Return type str
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property input_shape
Number of input nodes in the genome.

Return type int

mate(other)
Mates two genomes to produce a new genome (offspring).

Sexual reproduction. Follows the idea described in the original paper of the NEAT algorithm:

“When crossing over, the genes in both genomes with the same innovation numbers are lined up. These
genes are called matching genes. (. . . ). Matching genes are inherited randomly, whereas disjoint genes
(those that do not match in the middle) and excess genes (those that do not match in the end) are inherited
from the more fit parent. (. . . ) [If the parents fitness are equal] the disjoint and excess genes are also
inherited randomly. (. . . ) there’s a preset chance that an inherited gene is disabled if it is disabled in either
parent.” - [SM02]

Parameters other (NeatGenome) – The second genome. Currently, NeatGenome is only
compatible for mating with instances of NeatGenome or of one of its subclasses.

Return type NeatGenome

Returns A new genome (the offspring born from the sexual reproduction between the current
genome and the genome passed as argument.

Raises IncompatibleGenomesError – If the genome passed as argument to other is
incompatible with the current genome (self ).

mutate_weights()
Randomly mutates the weights of the genome’s connections.

Each connection gene in the genome has a chance to be perturbed, reset or to remain unchanged.

Return type None

nodes()
Returns all the genome’s node genes. Order: inputs, bias, outputs and hidden.

Return type List[NodeGene]

property output_shape
Number of output nodes in the genome.

Return type int

process(x)
Feeds the given input to the neural network.

In this implementation, there is no distinction between a genome and the neural network it encodes. The
genome will emulate a neural network (its phenotype) in order to process the given input. The encoded
network is a Graph Neural Networks (GNN).

Note: The processing is done recursively, starting from the output nodes (top-down approach). Because
of that, nodes not connected to at least one of the network’s output nodes won’t be processed.

Parameters x (Sequence[float]) – A sequence object (like a list or numpy array) contain-
ing the inputs to be fed to the neural network input nodes. It represents a single training
sample. The value in the index i of X will be fed to the 𝑖𝑡ℎ input node of the neural network.

Return type ndarray
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Returns A numpy array containing the outputs of the network’s output nodes. The index i
contains the activation value of the 𝑖𝑡ℎ output node of the network.

Raises InvalidInputError – If the number of elements in X doesn’t match the number of
input nodes in the network.

process_node(n)
Recursively processes the activation of the given node.

Unless it’s a bias or input node (that have a fixed output), a node must process the input it receives from
other nodes in order to produce an activation. This is done recursively: if n receives input from a node m
that haven’t had its activation calculated yet, the activation of m will be calculated recursively before the
activation of n is computed. Recurrences are solved by using the previous activation of the “problematic”
node.

Let 𝑤𝑖 be the weight of the 𝑖th connection that has n as destination node. Let 𝑎𝑖 be the current cached
output of the source node of 𝑐𝑖. Let 𝜎 be the activation function of n. The activation (output) a of n is
computed as follows:

𝑎 = 𝜎(
∑︀
𝑖

𝑤𝑖 · 𝑎𝑖)

Parameters n (NodeGene) – The node to be processed.

Return type float

Returns The activation value (output) of the node.

random_copy()
Makes a deep copy of the genome, but with random weights.

Return type NeatGenome

Returns A deep copy of the genome with the same topology of the original genome, but random
connections weights.

reset()
Wrapper for reset_activations().

Return type None

reset_activations()
Resets cached activations of the genome’s nodes.

It restores the current activation value of all the nodes in the network to their initial value.

Return type None

simple_copy()
Makes a simple copy of the genome.

Wraps a call to this class’ constructor.

Return type NeatGenome

Returns A copy of the genome without any of its connections (including the ones between input
and output nodes) and hidden nodes.

valid_in_nodes()
Checks if all the genome’s input nodes are valid.

An input node is considered to be valid if it has at least one enabled connection leaving it, i.e., its activation
is used as input by at least one other node.

Return type bool
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Returns True if all the genome’s input nodes are valid and False otherwise.

valid_out_nodes()
Checks if all the genome’s output nodes are valid.

An output node is considered to be valid if it receives, during its processing, at least one input, i.e., the
node has at least one enabled incoming connection. Invalid output nodes simply outputs a fixed default
value and are, in many cases, undesirable.

Return type bool

Returns True if all the genome’s output nodes have at least one enabled incoming connection
and False otherwise. Self-connecting connections are not considered.

visualize(**kwargs)
Simple wrapper for the nevopy.neat.visualization.visualize_genome() function.
Please refer to its documentation for more information.

Return type None

visualize_activations(**kwargs)
Simple wrapper for the nevopy.neat.visualization.visualize_activations() func-
tion. Please refer to its documentation for more information.

Return type Any

nevopy.neat.id_handler module

This module implements the ID handler, use to assign IDs to species, genomes, hidden nodes and connections. In the
case of nodes and connections genes, the ID can also be interpreted as an innovation number.

class nevopy.neat.id_handler.IdHandler(num_inputs, num_outputs, has_bias)
Bases: object

Handles the assignment of IDs.

An ID handler manages the assignment of IDs to species, genomes, hidden nodes and connections. In the case
of nodes and connections genes, the ID can also be interpreted as an innovation number.

“The innovation numbers are historical markers that identify the original historical ancestor of each gene. New
genes are assigned new increasingly higher numbers.” - [SM02]

The ID handler implements the following solution:

“A possible problem is that the same structural innovation will receive different innovation numbers in the same
generation if it occurs by chance more than once. However, by keeping a list of the innovations that occurred
in the current generation, it is possible to ensure that when the same structure arises more than once through
independent mutations in the same generation, each identical mutation is assigned the same innovation number.
Thus, there is no resultant explosion of innovation numbers.” - [SM02]

In NEvoPy, it’s possible to configure the rate at which innovation numbers are reset (see NeatConfig.
reset_innovations_period).

Warning: This class isn’t compatible with parallel processing.

Parameters

• num_inputs (int) – Number of input nodes in the genomes.

• num_outputs (int) – Number of output nodes in the genomes.
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• has_bias (bool) – Whether the genomes have a bias node.

next_connection_id(src_id, dest_id)
Returns an ID / innovation number for a connection gene.

The new connection is identified through the IDs of its source and destination nodes. While the ID handler
isn’t reset, connections that have the same source and destination nodes will be assigned the same ID.

Parameters

• src_id (int) – ID of the new connection’s source node.

• dest_id (int) – ID of the new connection’s destination node.

Return type int

Returns An ID for the new connection.

next_hidden_node_id(src_id, dest_id)
Returns an ID / innovation number for a hidden node.

A hidden node is created by breaking an existing connection of the genome in two. Consider two nodes A
and B, both of which are present in multiple genomes of the population. While the ID handler isn’t reset,
hidden nodes created by breaking the connection A->B will be assigned the same ID / innovation number.

Parameters

• src_id (int) – ID of the source node of the connection being broken to create the new
hidden node.

• dest_id (int) – ID of the destination node of the connection being broken to create the
new hidden node.

Return type int

Returns An ID for the new hidden node.

next_species_id()
Returns a new unique ID for a species.

reset()
Resets the cache of new nodes and connections.

This resets the handler’s cached innovations.

Return type None

nevopy.neat.population module

Implementation of the main mechanisms of the NEAT algorithm.

This is the main module of NEvoPy’s implementation of the NEAT algorithm. It implements the NeatPopulation
class, which handles the evolution of a population/community of NEAT genomes.

class nevopy.neat.population.NeatPopulation(size, num_inputs=None, num_outputs=None,
base_genome=None, config=None, process-
ing_scheduler=None)

Bases: nevopy.base_population.BasePopulation

Population of individuals (genomes) to be evolved by the NEAT algorithm.

Main class of NEvoPy’s implementation of the NEAT algorithm. It represents a population of individuals
(genomes) to be evolved. The correct term, in NEAT’s case, is actually “community” (group of populations
of two or more different species) rather than “population” (subset of individuals of one species), since NEAT
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divides its genomes into species. However, to maintain consistency with the neuroevolution literature, the term
“population” is used.

To use NEAT, most users will need to use only this class. It’s main method, evolve(), starts the evolutionary
process. By providing a processing scheduler, the user is able to specify how the computation of the fitness of
the population’s genomes will occur (whether to use serial or parallel processing, CPU or GPU, etc).

By default, a PoolProcessingScheduler is used. It implements parallel processing using (by default)
all the CPU cores of the machine where the program is running. Alternatively, if you want to run the evolution
process on multiple machines (cluster) you should check out the RayProcessingScheduler.

Example

Suppose you have already defined a function called fitness_func that takes a genome as input and calculates its
fitness. If the networks take 10 input values and outputs 3 values, here is how you can proceed to create and
evolve a population of 100 genomes using the default settings and processing scheduler:

def fitness_func(genome):
"""
Function that takes a genome as input and returns the genome's
fitness (a float) as output.
"""
# ...

# Creating and evolving a population:
population = NeatPopulation(size=100,

num_inputs=10,
num_outputs=3)

history = population.evolve(generations=100,
fitness_function=fitness_func)

# Visualizing the progression of the population's fitness:
history.visualize()

# Retrieving and visualizing the fittest genome of the population:
best_genome = population.fittest()
best_genome.visualize()

Parameters

• size (int) – Number of genomes in the population (constant value).

• num_inputs (Optional[int]) – Number of input nodes in each genome. If None, the
number of inputs will be inferred from the base genome.

• num_outputs (Optional[int]) – Number of output nodes in each genome. If None,
the number of outputs will be inferred from the base genome.

• base_genome (Optional[NeatGenome]) – Genome that will serve as a base for
the randomly generated genomes of the population. If None, a new genome of the class
NeatGenome will be used as the base genome.

• config (NeatConfig) – The settings of the evolutionary process. If None the default
settings will be used.

• processing_scheduler (Optional[ProcessingScheduler]) – Processing
scheduler to be used to compute the fitness of the population’s genomes. If None, the default
scheduler will be used PoolProcessingScheduler.
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species
List with the currently alive species in the population.

Type List[NeatSpecies]

DEFAULT_SCHEDULER
alias of nevopy.processing.pool_processing.PoolProcessingScheduler

property config
Config object that stores the settings used by the population.

Return type Any

evolve(generations, fitness_function, callbacks=None, verbose=2, **kwargs)
Evolves the population of genomes using the NEAT algorithm.

Parameters

• generations (int) – Number of generations for the algorithm to run. A generation is
completed when all the population’s genomes have been processed and reproduction and
speciation has occurred.

• fitness_function (Callable[[NeatGenome], float]) – Fitness function
to be used to evaluate the fitness of individual genomes. It must receive a genome as input
and produce a float (the genome’s fitness) as output.

• callbacks (Optional[List[Callback]]) – List with instances of Callback
that will be called during the evolutionary session. By default, a History callback is al-
ways included in the list. A CompleteStdOutLogger or a SimpleStdOutLogger
might also be included, depending on the value passed to the verbose param.

• verbose (int) – Verbose level (logging on stdout). Options: 0 (no verbose), 1 (light
verbose) and 2 (heavy verbose).

Return type History

Returns A History object containing useful information recorded during the evolutionary
process.

generate_offspring(species, rank_prob_dist)
Generates a new genome from one or more genomes of the species.

The offspring can be generated either by mating two randomly chosen genomes (sexual reproduction) or by
cloning a single genome (asexual reproduction / binary fission). After the newly born genome is created,
it has a chance of mutating. The possible mutations are:

. Enabling a disabled connection;

. Changing the weights of one or more connections;

. Creating a new connection between two random nodes;

. Creating a new random hidden node.

Parameters

• species (NeatSpecies) – Species from which the offspring will be generated.

• rank_prob_dist (Sequence) – Sequence (usually a numpy array) containing the
chances of each of the species genomes being the first parent of the newborn genome.

Return type NeatGenome

Returns A newly generated genome.
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info()
Returns a string containing relevant information about the population.

Return type str

offspring_proportion(num_offspring)
Calculates the number of descendants each species will leave for the next generation.

Every species is assigned a potentially different number of offspring in proportion to the sum of adjusted
fitnesses of its member organisms [SM02]. This selection method is called roulette wheel selection.

Parameters num_offspring (int) – Number of genomes to be generated by all the species
combined.

Returns A dictionary mapping the ID of each of the population’s species to the number of descendants it
will leave for the next generation.

Return type Dict[int, int]

reproduction()
Handles the reproduction of the population’s genomes.

This method implements the reproduction mechanism described in the original paper of the NEAT algo-
rithm [SM02].

First, the most fit genomes of each species with more than a pre-defined number of individuals are selected
to be passed unchanged to the next generation (elitism). Next, the least fit genomes of each species are
discarded (reverse elitism). After that, the number of descendants of each species is calculated based on
the proportion between the total fitness of the population and the adjusted fitness of the species (roulette
wheel selection). Finally, the reproduction of individuals of the same species (and, on rare occasions,
between genomes of different species as well) occurs.

Genomes with a higher fitness have a higher chance of leaving offspring. Within a species, the chance of a
genome reproducing is given by the position it occupies in the species fitness rank (rank-based selection).
This means that the reproduction chance of a genome is not directly calculated from the genome’s fitness,
but rather from how well positioned is the genome in the fitness rank.

Most of the behaviour described above can be adjusted by changing the settings of the evolutionary process
(see NeatConfig).

Return type None

speciation(generation)
Divides the population’s genomes into species.

The importance of speciation for NEAT:

“Speciating the population allows organisms to compete primarily within their own niches instead of with
the population at large. This way, topological innovations are protected in a new niche where they have
time to optimize their structure through competition within the niche. The idea is to divide the population
into species such that similar topologies are in the same species.” - [SM02]

The distance (compatibility) between a pair of genomes is calculated based on to the number of excess and
disjoint genes between them. See NeatGenome.distance() for more information.

About the speciation process:

“Each existing species is represented by a random genome inside the species from the previous generation.
A given genome g in the current generation is placed in the first species in which g is compatible with the
representative genome of that species. This way, species do not overlap. If g is not compatible with any
existing species, a new species is created with g as its representative.” - [SM02]
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Species that haven’t improved their fitness for a pre-defined number of generations are extinct, i.e., they are
removed from the population and aren’t considered for the speciation process. This number is configurable.

Parameters generation (int) – Current generation number.

Return type None

nevopy.neat.species module

Implementation of the NeatSpecies class.

class nevopy.neat.species.NeatSpecies(species_id, generation)
Bases: object

Represents a species within NEAT’s evolutionary environment.

Parameters

• species_id (int) – Unique identifier of the species.

• generation (int) – Current generation. The generation in which the species is born.

representative
Genome used to represent the species.

Type Optional[NeatGenome]

members
List with the genomes that belong to the species.

Type List[NeatGenome]

last_improvement
Generation in which the species last showed improvement of its fitness. The species fitness in a given
generation is equal to the fitness of the species most fit genome on that generation.

Type int

best_fitness
The last calculated fitness of the species most fit genome.

Type Optional[float]

avg_fitness()
Returns the average fitness of the species genomes.

Return type float

fittest()
Returns the fittest member of the species.

Return type NeatGenome

property id
Unique identifier of the species.

Return type int

random_representative()
Randomly chooses a new representative for the species.

Return type None
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nevopy.neat.visualization module

This module implements visualization utilities related to the NEAT algorithm.

class nevopy.neat.visualization.NodeVisualizationInfo(label='', activa-
tion_threshold=0.5,
mode='greater', equal-
ity_precision=0.01)

Bases: object

Stores information about an input or output node of a NeatGenome to be visualized with the neat.
visualize_activations() function.

Parameters

• label (str) – Label to be drawn next to the node.

• activation_threshold (float) – Value to be taken as reference when checking if
the node is activated or not.

• mode (str) – Name of the method to be used to check if the node is activated or not.
Currently available modes: “greater”, “less”, “equal” and “diff”.

is_activated(activation)
Checks whether the node is activated or not.

Return type bool

nevopy.neat.visualization.columns_graph_layout(genome, width, height, node_size,
horizontal_pad_pc=(0.03, 0.03),
vertical_pad_pc=(0.03, 0.03),
ideal_h_nodes_per_col=4, con-
sider_bias_node=True)

Positions the network’s nodes in columns.

The input nodes are placed in the left-most column and the output nodes are placed in the right-most columns.
The hidden nodes are placed in columns located between those two columns. For big networks, try using a
smaller node size for better quality.

Parameters

• genome (NeatGenome) – The genome to be visualized.

• width (float) – Width of the figure / surface.

• height (float) – Height of the figure / surface.

• node_size (float) – Size of the drawn nodes.

• horizontal_pad_pc (Tuple[float, float]) – Tuple containing the size of the
padding on the left and on the right of the surface. Unit: the width of the surface.

• vertical_pad_pc (Tuple[float, float]) – Tuple containing the size of the
padding below and above the surface. Unit: the height of the surface.

• ideal_h_nodes_per_col (int) – Preferred number of hidden nodes per column (the
algorithm will try to draw columns with this amount of hidden nodes when possible).

• consider_bias_node (bool) – Whether the bias node should be considered or not
when calculating the positions.

Return type Dict[int, Tuple[float, float]]

Returns Dictionary mapping the ID of each node to a tuple containing its position in the figure.
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nevopy.neat.visualization.visualize_activations(genome, surface_size=(700,
450), node_radius=14,
node_deactivated_color=(190, 190,
190), node_activated_color=(2, 68,
144), bias_node_color='yellow',
node_border_color='black',
edge_activated_color=(0, 120, 233),
edge_deactivated_color=(100, 100,
100), activated_edge_width=2,
deactivated_edge_width=1, hor-
izontal_pad_pc=(0.015, 0.015),
vertical_pad_pc=(0.015, 0.015),
hidden_activation_threshold=0.5,
input_visualization_info=None,
output_visualization_info=None, out-
put_activate_greatest_only=True,
show_input_values=False,
show_output_values=False,
labels_color='white',
labels_config=None,
show_activation_light=True, ac-
tivation_light_color=(104, 179,
235), activation_light_radius_pc=2,
ideal_h_nodes_per_col=4,
background_color='black',
node_border_thickness=2,
draw_bias_node=False, re-
turn_rgb_array=False)

Draws the network using different colors for activated and deactivated nodes and edges.

Note: This method requires pygame installed. You can install it using the command:

$ pip install pygame

Parameters

• genome (NeatGenome) – The genome to be visualized.

• surface_size (Tuple[int, int]) – Width and height of the pygame surface to be
drawn.

• node_radius (float) – Radius (size) of the drawn nodes.

• node_deactivated_color (Union[str, Tuple[int, int, int]]) – Color
of deactivated nodes.

• node_activated_color (Union[str, Tuple[int, int, int]]) – Color of
activated nodes.

• bias_node_color (Union[str, Tuple[int, int, int]]) – Color of the bias
node.

• node_border_color (Union[str, Tuple[int, int, int]]) – Color of the
nodes’ borders.
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• edge_activated_color (Union[str, Tuple[int, int, int]]) – Color of
activated edges.

• edge_deactivated_color (Union[str, Tuple[int, int, int]]) – Color
of deactivated edges.

• activated_edge_width (int) – The width/thickness of activated edges.

• deactivated_edge_width (int) – The width/thickness of deactivated edges.

• horizontal_pad_pc (Tuple[float, float]) – Tuple containing the size of the
padding on the left and on the right of the surface. Unit: the width of the surface.

• vertical_pad_pc (Tuple[float, float]) – Tuple containing the size of the
padding below and above the surface. Unit: the height of the surface.

• hidden_activation_threshold (float) – Activation threshold for hidden nodes.
If the activation value of a hidden node is greater than this threshold, the node is considered
to be activated.

• (Optional[Union[ (output_visualization_info) –
List[NodeVisualizationInfo], List[str]]]): If it’s a list of strings, each string will be
the label of an input node and default settings will be used to determine if an input node is
activated or not. If it’s a list of NodeVisualizationInfo objects, then the information
provided in the objects will be used instead. If None, default settings will be used to
determine if an input node is activated or not and no labels will be drawn for the input
nodes.

• (Optional[Union[ – List[NodeVisualizationInfo], List[str]]]): If it’s a list of strings,
each string will be the label of an output node and default settings will be used to determine
if an output node is activated or not. If it’s a list of NodeVisualizationInfo objects,
then the information provided in the objects will be used instead. If None, default settings
will be used to determine if an output node is activated or not and no labels will be drawn
for the output nodes.

• show_input_values (bool) – If True and input_visualization_info is not
None, then the input values will be drawn next to each input node.

• show_output_values (bool) – If True and output_visualization_info is
not None, then the output values will be drawn next to each output node.

• output_activate_greatest_only (bool) – If True, only one output node can be
activated at a time (the node with the greatest activation value). Otherwise, more than one
node can be activated at a time.

• labels_color (Union[str, Tuple[int, int, int]]) – Color of the labels.

• labels_config (Dict[str, Any]) – Keyword arguments to be passed to the
pygame.SysFont() constructor.

• show_activation_light (bool) – Whether or not to show a “light ring” around
activated nodes.

• activation_light_color (Optional[Union[str, Tuple[int, int,
int]]]) – The color of the light ring to be shown around activated nodes.

• activation_light_radius_pc (float) – Radius of the light ring to be drawn
around activated nodes. Unit: the node’s radius.

• ideal_h_nodes_per_col (int) – Preferred number of hidden nodes per column (the
algorithm will try to draw columns with this amount of hidden nodes whenever possible).

54 Chapter 6. nevopy package



NEvoPy

• background_color (Union[str, Tuple[int, int, int]]) – The back-
ground color of the surface.

• node_border_thickness (Optional[float]) – Thickness of the nodes’ borders.
If None or 0, no border will be drawn.

• draw_bias_node (bool) – Whether to draw the network’s bias node or not.

• return_rgb_array (bool) – If True, returns a numpy array with the generated image
instead of a pygame surface.

Return type Union[ForwardRef, ndarray]

Returns

If return_rgb_array is False, an instance of pygame.Surface with the drawings is
returned. You can display it using pygame:

screen_size = 700, 450
display = pygame.display.set_mode(screen_size)
# ...
s = genome.visualize_activations(surface_size=screen_size)
display.blit(s, [0, 0])
pygame.display.update()

If return_rgb_array is True, a numpy array with the generated image is returned instead.

Raises ModuleNotFoundError – If pygame is not found.

nevopy.neat.visualization.visualize_genome(genome, layout_name='columns',
layout_kwargs=None, show=True,
block_thread=True, save_to=None,
save_transparent=False, figsize=(10,
6), node_size=300, pad=1, leg-
ends=True, nodes_ids=True,
node_id_color='black', edge_curviness=0.1,
edges_ids=False, edge_id_color='black',
background_color='snow', leg-
end_box_color='honeydew', in-
put_color='deepskyblue', out-
put_color='mediumseagreen', hid-
den_color='silver', bias_color='khaki')

Plots the neural network (phenotype) encoded by the genome.

The network is drawn as a graph, with nodes and edges. An edge’s color is chosen according to the edge’s
weight. Edges with greater weights are drawn with more intense / stronger colors. Edges connecting a node to
itself aren’t be drawn.

This method uses NetworkX to handle the drawings. It positions the network’s nodes according to a layout,
whose name you can specify in the parameter layout_name. The currently available layouts are:

• All the standard NetworkX’s layouts available in this link;

• The graphviz layout; it’s really good, but to use it you must have Graphviz-Dev and pygraphviz installed
on your machine;

• The columns layout (used by default), implemented exclusively for NEvoPy; it positions the
nodes in columns (see NeatGenome.columns_graph_layout(), specially the parameter
ideal_h_nodes_per_col).
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For the colors parameters, it’s possible to pass a string with the color HEX value or a string with the color’s
name (names available here: https://matplotlib.org/3.1.0/gallery/color/named_colors.html).

Parameters

• genome (NeatGenome) – The genome to be visualized.

• layout_name (str) – The name of the layout to be used to position the network’s nodes.

• layout_kwargs (Optional[Dict[str, Any]]) – Keyed arguments to be passed
to the layout. Check each layout documentation for more information about the accepted
arguments.

• show (bool) – Whether to show the generated image or not. If True, a window will be
created by matplotlib to show the image.

• block_thread (bool) – Whether to block the execution’s thread while showing the
image. Useful for visualizing multiple networks at once. In this case, you should call
NeatGenome.visualize() with this parameter set to False on all genomes except for
the last one, so all the windows are shown simultaneously.

• save_to (Optional[str]) – Path to save the image. If None, the image won’t be
automatically saved.

• save_transparent (bool) – Whether the saved image should have a transparent back-
ground or not.

• figsize (Tuple[int, int]) – Size of the matplotlib figure.

• node_size (int) – Size of the drawn nodes, in points**2 (the area of each node). Default
size is 300. See the parameter s of matplotlib.axes.Axes.scatter for more information.

• pad (int) – The image’s padding (distance between the figure of the network and the
image’s border).

• legends (bool) – If True, a box with legends describing the nodes colors will be drawn.

• nodes_ids (bool) – If True, the nodes will have their ID drawn inside them.

• node_id_color (str) – Color of the drawn nodes ids.

• edge_curviness (float) – Angle, in radians, of the edges arcs. A value of 0 indicates
a straight line.

• edges_ids (bool) – If True, each connection/edge will have its ID drawn on it. Keep in
mind that some labels might overlap with each other, making only one of them visible.

• edge_id_color (str) – Color of the drawn connections/edges ids.

• background_color (str) – Color of the figure’s background.

• legend_box_color (str) – Color of the legend box.

• input_color (str) – Color of the input nodes.

• output_color (str) – Color of the output nodes.

• hidden_color (str) – Color of the hidden nodes.

• bias_color (str) – Color of the bias node.

Raises RuntimeError – If both show and save_to parameters are set to False (in which case the
function wouldn’t be doing anything but wasting computation).

Return type None
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Module contents

Imports core names of nevopy.neat.

6.1.4 nevopy.processing package

Submodules

nevopy.processing.base_scheduler module

Defines a common interface for processing schedulers.

This module contains a base model for a processing scheduler, the entity responsible for managing the computation of
a population’s fitness in NEvoPy’s algorithms. Schedulers allow the implementation of the computation methods (like
the use of serial or parallel processing) to be separated from the implementation of the neuroevolutionary algorithms.

nevopy.processing.base_scheduler.TProcItem
TypeVar indicating an item to be scheduled for processing by a ProcessingScheduler. Alias for Type-
Var(“TProcItem”).

Type TypeVar

nevopy.processing.base_scheduler.TProcResult
TypeVar indicating the result of processing a TProcItem. Alias for TypeVar(“TProcResult”).

Type TypeVar

class nevopy.processing.base_scheduler.ProcessingScheduler
Bases: abc.ABC

Defines a common interface for processing schedulers.

In NEvoPy, a processing scheduler is responsible for managing the computation of the fitness of a population
of individuals being evolved. This abstract class defines a common interface for processing schedulers used by
different algorithms. Schedulers allow the implementation of the computation methods (like the use of serial or
parallel processing) to be separated from the implementation of the neuroevolutionary algorithms.

Implementing your own processing scheduler is useful when you want to customize the computation of the
population’s fitness. You can, for example, implement a scheduler that makes use of multiple CPU cores or
GPUs (parallel processing).

abstract run(items, func)
Processes the given items and returns a result.

Main function of the scheduler. Call it to make the scheduler manage the processing of a batch of items.

Parameters

• items (Sequence[TProcItem]) – Iterable containing the items to be processed.

• func (Optional[Callable[[TProcItem], TProcResult]]) – Callable
(usually a function) that takes one item TProcItem as input and returns a result
TProcResult as output. Generally, TProcItem is an individual in the population and
TProcResult is the individual’s fitness. Since some scenarios requires the fitness of the
population’s individuals to be calculated together, at once, the use of this parameter is not
mandatory (this decision is a implementation particularity of each sub-classed scheduler).
If additional arguments must be passed to the callable you want to use, it’s possible to use
Python’s functools.partial or to just wrap it with a simple function.

Return type List[~TProcResult]
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Returns A list containing the results of the processing of each item. It is guaranteed that the
ordering of the items in the returned list follows the order in which the items are yielded by
the iterable passed as argument.

nevopy.processing.networked_scheduler module

Implementation of a processing scheduler take makes use of workers hosted in different machines in a network.

Todo: Implementation of the scheduler.

nevopy.processing.pool_processing module

Implements a processing scheduler that uses multiprocessing.Pool.

multiprocessing.Pool is a built-in Python class that facilitates parallel processing on a single machine. Note
that it requires compatibility with pickle.

class nevopy.processing.pool_processing.PoolProcessingScheduler(num_processes=None,
chunk-
size=None)

Bases: nevopy.processing.base_scheduler.ProcessingScheduler

Processing scheduler that uses Python’s multiprocessing.Pool.

This scheduler implements parallel processing (on a single machine) using Python’s built-in module
multiprocessing, specifically, the class Pool.

Note: Pool uses, internally, pickle as the serialization method. This might be a source of errors due to
incompatibility. Make sure you read the docs carefully before using this scheduler.

Note: When the processing of individual items isn’t a very resource demanding task (e.g., learn-
ing the 2 variable XOR), using this scheduler might yield significantly better performance than using
RayProcessingScheduler (due to ray’s greater overhead). However, in most situations, the performance
difference is negligible and using RayProcessingScheduler as the processing scheduler is preferable to
using this class, since ray is safer, scales better and allows clustering.

Parameters

• num_processes (Optional[int]) – Number of worker processes to use. If None,
then the number returned by os.cpu_count() is used.

• chunksize (Optional[int]) – Pool.map(), used internally by the scheduler,
chops the input iterable into a number of chunks which it submits to the process pool as
separate tasks. This parameter specifies the (approximate) size of these chunks.

close()
Calls the equivalent method on the scheduler’s pool object.

join()
Calls the equivalent method on the scheduler’s pool object.
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run(items, func)
Processes the given items and returns a result.

Main function of the scheduler. Call it to make the scheduler manage the parallel processing of a batch of
items using multiprocessing.Pool.

Note: Make sure that both items and func are serializable with pickle.

Parameters

• items (Sequence[TProcItem]) – Iterable containing the items to be processed.

• func (Callable[[TProcItem], TProcResult]) – Callable (usually a function)
that takes one item TProcItem as input and returns a result TProcResult as output.
Generally, TProcItem is an individual in the population and TProcResult is the
individual’s fitness.

Return type List[~TProcResult]

Returns A list containing the results of the processing of each item. It is guaranteed that the
ordering of the items in the returned list follows the order in which the items are yielded by
the iterable passed as argument.

terminate()
Calls the equivalent method on the scheduler’s pool object.

nevopy.processing.ray_processing module

Implements a processing scheduler that uses the ray framework.

By using ray (https://github.com/ray-project/ray), the scheduler is able to implement parallel processing, either on a
single machine or on a cluster.

class nevopy.processing.ray_processing.RayProcessingScheduler(address=None,
num_cpus=None,
num_gpus=None,
worker_gpu_frac=None,
**kwargs)

Bases: nevopy.processing.base_scheduler.ProcessingScheduler

Scheduler that uses ray to implement parallel processing.

Ray is an open source framework that provides a simple, universal API for building distributed applications.
This scheduler uses it to implement parallel processing. It’s possible to either run ray on a single machine or
on a cluster. For more information regarding the ray framework, checkout the project’s GitHub page: https:
//github.com/ray-project/ray.

It’s possible to view the ray’s dashboard at http://127.0.0.1:8265. It contains useful information about the
distribution of work and usage of resources by ray.

When this class is instantiated, a new ray runtime is created. You should close existing ray runtimes before
creating a new ray scheduler, to avoid possible conflicts. If, for some reason, you want to use a currently
running ray runtime instead of creating a new one, pass True as argument to ignore_reinit_error.

This class is, basically, a simple wrapper for ray. If you’re an advanced user and this scheduler doesn’t meet your
needs, it’s recommended that you implement your own scheduler by inheriting ProcessingScheduler.

Parameters
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• address (Optional[str]) – The address of the Ray cluster to connect to. If this
address is not provided, then this command will start Redis, a raylet, a plasma store, a
plasma manager, and some workers. It will also kill these processes when Python exits. If
the driver is running on a node in a Ray cluster, using auto as the value tells the driver to
detect the the cluster, removing the need to specify a specific node address.

• num_cpus (Optional[int]) – Number of CPUs the user wishes to assign to each
raylet. By default, this is set based on virtual cores (value returned by os.cpu_count()).

• num_gpus (Optional[int]) – Number of GPUs the user wishes to assign to each
raylet. By default, this is set based on detected GPUs. If you are using TensorFlow, it’s
recommended for you to execute the following piece of code before importing the module:

import os
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"

This will prevent individual TensorFlow’s sessions from allocating the entire GPU memory
available.

• worker_gpu_frac (Optional[float]) – Minimum fraction of a GPU a worker
needs in order to use it. If there isn’t enough GPU resources available for a worker when a
task is assigned to it, it will not use any GPU resources. Here we consider the number of
workers as being equal to the number of virtual CPU cores available. By default, this frac-
tion is set to num_gpus / num_cpus, which means that all workers will use the GPUs,
each being able to access an equal fraction of them. Note that this might be a source of out
of memory errors, since the GPU fraction assigned to each worker might be too low. It’s
usually better to manually select a fraction.

• **kwargs – Optional named arguments to be passed to ray.init(). For a complete list of the
parameters of ray.init(), check ray’s official docs (https://docs.ray.io/en/master/package-ref.
html).

run(items, func)
Processes the given items and returns a result.

Main function of the scheduler. Call it to make the scheduler manage the parallel processing of a batch of
items using ray.

Parameters

• items (Sequence[TProcItem]) – Sequence containing the items to be processed.

• func (Callable[[TProcItem], TProcResult]) – Callable (usually a function)
that takes one item TProcItem as input and returns a result TProcResult as output.
Generally, TProcItem is an individual in the population and TProcResult is the
individual’s fitness. If additional arguments must be passed to the callable you want to
use, it’s possible to use Python’s functools.partial or to just wrap it with a simple
function. The callable doesn’t need to be annotated with ray.remote, this is handled for
you.

Return type List[~TProcResult]

Returns A list containing the results of the processing of each item. It is guaranteed that the
ordering of the items in the returned list follows the order in which the items are yielded by
the iterable passed as argument.
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nevopy.processing.serial_processing module

Implements a simple wrapper for the serial processing of items.

class nevopy.processing.serial_processing.SerialProcessingScheduler
Bases: nevopy.processing.base_scheduler.ProcessingScheduler

Simple wrapper for the serial processing of items.

This is scheduler is just a wrapper for the serial processing of items, i.e., the processing of one item at a time. It
doesn’t involve any explicit parallel processing.

run(items, func)
Sequentially processes the input items.

Parameters

• items (Sequence[TProcItem]) – Iterable containing the items to be processed.

• func (Callable[[TProcItem], TProcResult]) – Callable (usually a function)
that takes one item TProcItem as input and returns a result TProcResult as output.
Generally, TProcItem is an individual in the population and TProcResult is the
individual’s fitness. If additional arguments must be passed to the callable you want to
use, it’s possible to use Python’s functools.partial or to just wrap it with a simple
function.

Return type List[~TProcResult]

Returns A list containing the results of the processing of each item. It is guaranteed that the
ordering of the items in the returned list follows the order in which the items are yielded by
the iterable passed as argument.

Module contents

Imports core names of nevopy.processing.

6.1.5 nevopy.utils package

Subpackages

nevopy.utils.gym_utils package

Submodules

nevopy.utils.gym_utils.callbacks module

This module defines an interface for callbacks to be used with GymFitnessFunction.

class nevopy.utils.gym_utils.callbacks.BatchObsGymCallback
Bases: nevopy.utils.gym_utils.callbacks.GymCallback

Simple callback that expands the dimensions of the observations yielded by a gym.Env before feeding them to
a genome.

Simply turns the observation into a batch of one item (the observation itself), so it can be fed to genomes that
require batched inputs (like genomes that use TensorFlow, for example).
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on_obs_processing(wrapped_obs)
Called right BEFORE the observation yielded by the environment is fed to the genome.

Changing the observation stored by the wrapper will have effects on the fitness function.

Subclasses should override this method for any actions to run.

Parameters wrapped_obs (nevopy.utils.MutableWrapper[Any]) – Mutable
wrapper around he observation yielded by the gym environment.

Return type None

class nevopy.utils.gym_utils.callbacks.GymCallback
Bases: object

Interface for callbacks to be used with GymFitnessFunction.

Each of the callback’s method is called at a different point during the evaluation of a genome’s fitness by a
GymFitnessFunction.

It’s not required for a subclass to implement all the methods of this class (you can implement only those that
will be useful for your case).

on_action_chosen(wrapped_action)
Called right AFTER an action is chosen by the genome.

Changing the action stored by the wrapper will have effects on the fitness function.

Subclasses should override this method for any actions to run.

Parameters wrapped_action (nevopy.utils.MutableWrapper[Any]) – Mutable
wrapper around the action chosen by the genome.

Return type None

on_env_built(env, genome)
Called right AFTER the gym environment is built.

This method is called right after the gym environment is built, i.e., right after a call to gym.make() is
made.

Parameters

• env (gym.Env) – The gym environment that’s going to be used by the fitness function.

• genome (nevopy.BaseGenome) – The genome currently being evaluated by the fit-
ness function.

Return type None

on_env_close()
Called right BEFORE the environment is closed and the function returns the fitness of the genome.

Subclasses should override this method for any actions to run.

Return type None

on_episode_start(current_eps, total_eps)
Called at the start of a new episode, before the env is reset.

Subclasses should override this method for any actions to run.

Parameters

• current_eps (int) – Number of the current episode.

• total_eps (int) – Total number of episodes to run during the current session.
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Return type None

on_obs_processing(wrapped_obs)
Called right BEFORE the observation yielded by the environment is fed to the genome.

Changing the observation stored by the wrapper will have effects on the fitness function.

Subclasses should override this method for any actions to run.

Parameters wrapped_obs (nevopy.utils.MutableWrapper[Any]) – Mutable
wrapper around he observation yielded by the gym environment.

Return type None

on_step_start(current_step, max_steps)
Called at the start of a new step.

Subclasses should override this method for any actions to run.

Parameters

• current_step (int) – Number of the current step.

• max_steps (int) – Maximum number of steps allowed in each episode.

Return type None

on_step_taken(obs, reward, done, info, total_reward, force_stop_eps)
Called right AFTER the environment’s step() method is called.

Subclasses should override this method for any actions to run.

Parameters

• obs (Any) – The observation yielded by the environment.

• reward (float) – The reward yielded by the environment.

• done (bool) – Whether or not the episode has finished.

• info (Dict[str, Any]) – Extra information yielded by the environment.

• total_reward (float) – Total reward obtained by the genome so far.

• force_stop_eps (nevopy.utils.MutableWrapper[bool]) – Setting the
value on this wrapper to True will forcefully stop the current episode.

Return type None

on_visualization()
Called right BEFORE the rendering of the environment occurs.

This method is only called when True is passed to the visualize parameter of
GymFitnessFunction.__call__().

Subclasses should override this method for any actions to run.

Return type None
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nevopy.utils.gym_utils.fitness_function module

This module implements a generalizable fitness function that can be used with most gym environments.

class nevopy.utils.gym_utils.fitness_function.GymFitnessFunction(make_env,
env_renderer=None,
call-
backs=None,
de-
fault_num_episodes=1,
de-
fault_max_steps=None,
num_obs_skip=0)

Bases: object

Wrapper for a fitness function to be used with gym.

This utility class implements a generalizable fitness function compatible with different gym environments.

Parameters

• make_env (Callable[[], gym.Env]) – Callable that creates the environment to be
used. It should receive no arguments and return an instance of gym.Env.

• env_renderer (Optional[GymRenderer]) – Instance of GymRenderer (or
a subclass) to be used to render the environment. By default, a new instance of
GymRenderer is created (default rendering of the environment).

• callbacks (Optional[List[GymCallback]]) – List with callbacks to be called
at different stages of the evaluation of the genome’s fitness.

• default_num_episodes (int) – Default number of episodes ran in each call to the
fitness function. This can be overridden during the call to the fitness function.

• default_max_steps (Optional[int]) – Default maximum number of steps al-
lowed in each episode. By default, there is no limit to the number of steps. This can be
overridden during the call to the fitness function.

• num_obs_skip (int) – Number of observations to be skipped during an episode. As an
example, consider this value is set to 3. In this case, for each sequence of 4 observations
yielded by the environment, only the 1st one will be fed to the genome. When, during a
step, no observation is fed to the genome, the genome’s last output is used to advance the
environment’s state.

env_renderer
Instance of GymRenderer (or a subclass) to be used to render the environment.

Type GymRenderer

callbacks
List with callbacks to be called at different stages of the evaluation of the genome’s fitness.

Type List[GymCallback]

num_obs_skip
Number of observations to be skipped during an episode.

Type int
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nevopy.utils.gym_utils.renderers module

This module implements the entities responsible for rendering a gym.Env during the evaluation of a genome’s fitness
by a GymFitnessFunction.

class nevopy.utils.gym_utils.renderers.GymRenderer(fps=45)
Bases: object

Defines the entity responsible for rendering a gym.Env during the evaluation of a genome’s fitness by a
GymFitnessFunction.

Parameters fps (int) – Frames per second.

fps
Frames per second.

Type int

flush()
Flushes the internal buffers of the renderer.

Doesn’t do anything by default. Subclasses should override this method in order for any action to occur.

Return type None

render(env, genome)
Renders the environment in “human mode”.

Parameters

• env (gym.Env) – Environment to be rendered.

• genome (BaseGenome) – Genome currently being evaluated.

Return type None

class nevopy.utils.gym_utils.renderers.NeatActivationsGymRenderer(out_path='./gym_videos',
fps=30,
play_video=True,
**kwargs)

Bases: nevopy.utils.gym_utils.renderers.GymRenderer

Gym env renderer that renders a NEAT genome’s neural network while the genome is interacting with the
environment.

Three videos will be generated: one containing the recording of the genome’s interactions with the environ-
ment, another containing the genome’s neural network states during the interactions and another containing the
concatenation of the two previously videos, side by side.

Note: Compatible with NeatGenome only!

Note: This renderer requires you to have the opencv-python and scikit-video packages installed.
You can install them using pip. You’ll also need FFmpeg.

Parameters

• out_path (str) – Path to the output directory.

• fps (int) – Frames per second of the generated videos.

6.1. Subpackages 65



NEvoPy

• play_video (bool) – If True, the concatenated videos will be automatically played
after the rendering is done.

• **kwargs (Dict[str, Any]) – Named arguments to be passed to genome.
visualize_activations().

flush()
Generates the videos from the images in the cache, closes the necessary resources and clears the image
cache.

Return type None

static play_video(video_file, fps)
Plays a video from a file. ?????

Return type None

render(env, genome)
Renders the environment in “human mode”.

Parameters

• env (gym.Env) – Environment to be rendered.

• genome (BaseGenome) – Genome currently being evaluated.

Return type None

Module contents

Exposes the core functionalities of gym_utils.

Submodules

nevopy.utils.deprecation module

Implements a decorator that can be used to mark functions, methods or classes as being deprecated.

nevopy.utils.deprecation.deprecated(decorated_item=None, *, version=None, instruc-
tions=None, warn_once=True)

Decorator for marking functions, methods or classes deprecated.

This decorator logs a deprecation warning whenever the decorated item is called. It has the following format:

From {call info}: {function/method/class} (from {module}) is deprecated and will be removed in
the future. Instructions for updating: {instructions}

The field {function/method/class} will contain:

• the function’s name, if the decorated item is a function;

• the method’s name and the method’s class name, if the decorated item is a method;

• the class’ name, if the decorated item is a class.

This decorator also edits the docstring of the decorated item. A deprecation notice is added to the start of the
docstring.

Parameters

• decorated_item (Optional[Any]) – The item being decorated. Having this param-
eter allows the decorator to be used without arguments.
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• instructions (Optional[str]) – Instructions on how to update the code using the
deprecated item.

• version (Optional[str]) – Version in which the item was deprecated.

• warn_once (bool) – If True, a warning will be printed only the first time the decorated
item is called. Otherwise, every call will log a warning.

Return type Any

Returns The decorated function, method or class.

nevopy.utils.utils module

This module implements useful utility functions.

class nevopy.utils.utils.Comparable
Bases: object

Indication of a “comparable” type.

class nevopy.utils.utils.MutableWrapper(value)
Bases: Generic[typing._T]

Simple class for wrapping immutable objects so they can be passed by reference to a callable.

nevopy.utils.utils.align_lists(lists, getkey=None, placeholder=None)
Aligns the given lists based on their common values.

Repeated entries within a single list are discarded.

Example

>>> align_lists(([1, 2, 3, 6], [1, 3, 4, 5]))
[[1, 2, 3, None, None, 6], [1, None, 3, 4, 5, None]]

Parameters

• lists (Iterable[List[_T]]) – Iterable that yields lists containing the objects to be
aligned.

• getkey (Optional[Callable[[_T], Comparable]]) – Optional function to be
passed to sorted() to retrieve comparable keys from the objects to be aligned.

• placeholder (Optional[Any]) – Value to be used as a placeholder when an item
doesn’t match with any other (see the example above, where None is the placeholder).

Return type List[List[~_T]]

Returns A list containing the aligned lists. The items in the aligning lists will be sorted in ascending
order.

nevopy.utils.utils.chance(p)
Randomly returns True or False.

Parameters p (float) – Float between 0 and 1. Specifies the chance of the function returning
True.

Return type bool

Returns A randomly chosen boolean value (True or False).
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nevopy.utils.utils.clear_output()
Clears the output.

Should work on Windows and Linux terminals and on Jupyter notebooks. On PyCharm, it simply prints a bunch
of new lines.

Return type None

nevopy.utils.utils.is_jupyter_notebook()
Checks whether the program is running on a jupyter notebook.

Warning: This function is not guaranteed to work! It simply checks if IPython.get_ipython()
returns None.

Return type bool

Returns True if the program is running on a jupyter notebook and False otherwise.

nevopy.utils.utils.make_table_row(name, current, past, abs_format='.2E', inc_format='+0.2E',
pc_format='+0.2%', show_inc_pc=True, colors=True,
positive_color='green', negative_color='red', neu-
tral_color='white')

Makes a row for a columnar table.

Information in the row: name of the attribute; current value of the attribute; past value of the attribute; how
much the attribute increased (absolute and percentage).

Return type List[str]

nevopy.utils.utils.make_xor_data(num_variables=2)
Builds data using the XOR logic function.

The generated inputs are all the possible combinations of input values with the specified number of variables.
Each variable is a bit (0 or 1). The generated outputs are the results (a single bit each) of the XOR function
applied to all the inputs.

Example

>>> xor_in, xor_out = make_xor_data(num_variables=2)
>>> for x, y in zip(xor_in, xor_out):
... print(f"{x} -> {y}")
...
[0 0] -> 0
[0 1] -> 1
[1 0] -> 1
[1 1] -> 0

Parameters num_variables (int) – Number of input variables for the XOR logic function.

Return type Tuple[ndarray, ndarray]

Returns A tuple with two numpy arrays. The first array contains the input values, and the second
array contains the output of the XOR function.

nevopy.utils.utils.min_max_norm(values)
Applies min-max normalization to the given values.

Return type array
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nevopy.utils.utils.pickle_load(abs_path)
Loads an object from the given absolute path.

Simple wrapper around the pickle package.

Parameters abs_path (str) – Absolute path of the saved “.pkl” file. If the given path doesn’t
end with the suffix “.pkl”, it will be automatically added.

Return type Any

Returns The loaded object.

nevopy.utils.utils.pickle_save(obj, abs_path)
Saves the given object to the given absolute path.

Simple wrapper around the pickle package.

Parameters

• obj (Any) – Object to be saved.

• abs_path (str) – Absolute path of the saving file. If the given path doesn’t end with the
suffix “.pkl”, it will be automatically added.

Return type None

nevopy.utils.utils.rank_prob_dist(size, coefficient, min_prob=1e-09)
Calculates a probability distribution that associates a probability to each position of a rank with the given size.

Parameters

• size (int) – Size of the rank (and of the probability distribution).

• coefficient (float) – This constant (let’s call it c) can be interpreted as follows: the
position p of the rank is assigned a probability that is c times higher than the position p +
1 of the rank. If c = 2, here is an example of a probability distribution generated by this
function: [0.5, 0.25, 0.125, 0.0675, . . . ].

• min_prob (float) – Probabilities with a value lower than the value passed to this param-
eter will be converted to 0. This prevents the occurrence of an arithmetic underflow.

Return type ndarray

Returns A numpy array with the probability distribution. The value in the index i of the array
represents the probability of the position i of the rank.

nevopy.utils.utils.round_proportional_distribution(to_distribute, values)
Given an integer A and a sequence S of arbitrary size k, this function divides A into k integers. The proportion
that the i-th integer represents of A is approximately equal to the proportion that S[i] represents of sum(S[i]).

Example

>>> round_proportional_distribution(100, [1.22, 2.78, 0.26, 5.74])
[12, 28, 3, 57]

Parameters

• to_distribute (int) – Integer to be distributed.

• values (Sequence[float]) – Values that will serve as a reference.

Return type List[int]

Returns A list with the same size as values containing integers that sum to to_distribute.
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Module contents

Exposes the main utility functions and classes within this package.

6.2 Submodules

6.3 nevopy.activations module

This module implements some activation functions.

Todo: Make all activation functions compatible with numpy arrays.

nevopy.activations.linear(x)
Linear activation function (simply returns the input, unchanged).

Return type float

nevopy.activations.sigmoid(x, clip_value=64)
Numeric stable implementation of the sigmoid function.

Estimated lower-bound precision with a clip value of 64: 10^(-28).

Return type float

nevopy.activations.steepened_sigmoid(x, step=4.9)
Steepened version of the sigmoid function.

The original NEAT paper used a steepened version of the sigmoid function with a step value of 4.9.

“We used a modified sigmoidal transfer function, (x) = 1 / (1 + exp(4.9x)), at all nodes. The steepened sigmoid
allows more fine tuning at extreme activations. It is optimized to be close to linear during its steepest ascent
between activations 0.5 and 0.5.” - [SM02]

Return type float

6.4 nevopy.base_genome module

Declares the base abstract class that defines the behaviour of a genome.

In the context of neuroevolution, a genome is the entity subject to the evolutionary process. It encodes a neural network
(the genome’s phenotype), either directly or indirectly.

This module declares the base abstract class that must be inherited by all the different classes of genomes used by the
neuroevolutionary algorithms in NEvoPy.

class nevopy.base_genome.BaseGenome
Bases: abc.ABC

Defines the general behaviour of a genome in NEvoPy.

This class must be inherited by all the different classes of genomes present in NEvoPy

In the context of neuroevolution, a genome is the entity subject to the evolutionary process. It encodes a neural
network (the genome’s phenotype), either directly or indirectly.
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As pointed out by [SM02], direct encoding schemes, employed in most cases, specify in the genome every
connection and node that will appear in the phenotype. In contrast, indirect encodings usually only specify rules
for constructing a phenotype. These rules can be layer specifications or growth rules through cell division.

One of the goals of this base abstract class is to abstract those details for the user, defining a general interface
for the different types of genomes used by the different neuroevolutionary algorithms in NEvoPy. Generally, for
NEvoPy, there is no distinction between a genome and the network it encodes.

A genome must be capable of processing inputs based on its nodes and connections in order to produce an
output, emulating a neural network. It also must be able to mutate and to generate offspring, in order to evolve.

fitness
The current fitness value of the genome.

Type float

abstract property config
Settings of the current evolutionary session.

If None, a config object hasn’t been assigned to this genome yet.

Return type Any

abstract deep_copy()
Makes an exact/deep copy of the genome.

Return type BaseGenome

Returns An exact/deep copy of the genome. It has the same topology and connections weights
of the original genome.

abstract distance(other)
Calculates the distance between two genomes.

Parameters other (BaseGenome) – The other genome.

Return type float

Returns A float representing the distance between the two genomes. The lower the distance, the
more similar the two genomes are.

abstract property input_shape
The expected shape of the inputs that will be fed to the genome.

Return type Union[int, Tuple[int, . . . ], None]

Returns

• None, if an input shape has not been defined yet;

• An int, if the expected inputs are one-dimensional;

• A tuple with the expected inputs’ dimensions, if they’re multi-dimensional.

classmethod load(abs_path)
Loads the genome from the given absolute path.

This method uses, by default, pickle to load the genome.

Parameters abs_path (str) – Absolute path of the saved “.pkl” file.

Return type BaseGenome

Returns The loaded genome.
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abstract mate(other)
Mates two genomes to produce a new genome (offspring).

Implements the sexual reproduction between a pair of genomes. The new genome inherits information
from both parents (not necessarily in an equal proportion)

Parameters other (Any) – The second genome. If it’s not compatible for mating with the
current genome (self ), an exception will be raised.

Return type BaseGenome

Returns A new genome (the offspring born from the sexual reproduction between the current
genome and the genome passed as argument).

Raises IncompatibleGenomesError – If the genome passed as argument to other is
incompatible with the current genome (self ).

abstract mutate_weights()
Randomly mutates the weights of the genome’s connections.

Return type None

abstract process(x)
Feeds the given input to the neural network encoded by the genome.

Parameters x (Any) – The input(s) to be fed to the neural network encoded by the genome.
Usually a NumPy ndarray or a TensorFlow tensor.

Return type Any

Returns The output of the network. Usually a NumPy ndarray or a TensorFlow tensor.

Raises InvalidInputError – If the shape of X doesn’t match the input shape expected by
the network.

abstract random_copy()
Makes a deep copy of the genome, but with random weights.

Return type BaseGenome

Returns A deep copy of the genome with the same topology of the original genome, but random
connections weights.

abstract reset()
Prepares the genome for a new generation.

In this method, relevant actions related to the reset of a genome’s internal state, in order to prepare it to a
new generation, are implemented. The implementation of this method is not mandatory.

Return type None

save(abs_path)
Saves the genome to the given absolute path.

This method uses, by default, pickle to save the genome.

Parameters abs_path (str) – Absolute path of the saving file. If the given path doesn’t end
with the suffix “.pkl”, it will be automatically added.

Return type None

abstract visualize(**kwargs)
Utility method for visualizing the genome’s neural network.

Return type None
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exception nevopy.base_genome.IncompatibleGenomesError
Bases: Exception

Indicates that an attempt has been made to mate (sexual reproduction) two incompatible genomes.

exception nevopy.base_genome.InvalidInputError
Bases: Exception

Indicates that the a given input isn’t compatible with a given neural network.

6.5 nevopy.base_population module

Implementation of the base abstract class that defines a population of genomes, each of which encodes a neural
network.

class nevopy.base_population.BasePopulation(size, processing_scheduler)
Bases: abc.ABC, Generic[typing.TGenome]

Base abstract class that defines a population of genomes (neural nets).

This base abstract class defines a population of genomes (each of which encodes a neural network) to be evolved
through neuroevolution. It’s in this class’ subclasses where the core of NEvoPy’s neuroevolutionary algorithms
are implemented.

Parameters

• size (int) – Number of genomes (constant) in the population.

• processing_scheduler (ProcessingScheduler) – Processing scheduler to be
used by the population.

scheduler
Processing scheduler used by the population. It’s responsible for abstracting the details on how the pro-
cessing is done (whether it’s sequential or distributed, local or networked, etc).

Type ProcessingScheduler

genomes
List with the genomes (neural networks being evolved) currently in the population.

Type List[TGenome]

stop_evolving
Flag that when set to True stops the evolutionary process being executed by the evolve() method.

Type bool

DEFAULT_SCHEDULER = None
Default processing scheduler to be used by the population.

average_fitness()
Returns the average fitness of the population’s genomes.

Return type float

abstract property config
Config object that stores the settings used by the population.

Return type Any

abstract evolve(generations, fitness_function, callbacks=None, **kwargs)
Evolves the population of genomes through neuroevolution.
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This is the main method of this class. It’s here where the main loop of the neuroevolutionary algorithm
implemented is located.

Parameters

• generations (int) – Maximum number of evolutionary generations.

• fitness_function (Callable[[TGenome], float]) – Fitness function used
to compute the fitness of a genome. It must take an instance of class:.BaseGenome as input
and return the genome’s fitness (float).

• callbacks (Optional[List["ne.callbacks.Callback"]]) – List with in-
stances of Callback. The callbacks will be called during different stages of an evolu-
tionary generation. They can be used to customize the algorithm’s behaviour.

Return type History

Returns An instance of nevopy.callbacks.History containing relevant information
about the evolutionary session.

fittest()
Returns the most fit genome in the population.

Return type ~TGenome

classmethod load(abs_path, scheduler=None)
Loads the population from the given absolute path.

This method uses, by default, pickle to load the population.

Parameters

• abs_path (str) – Absolute path of the saved “.pkl” file.

• scheduler (Optional[ProcessingScheduler]) – Processing scheduler to be
used by the population. If None, the default one will be used.

Return type BasePopulation

Returns The loaded population.

save(abs_path)
Saves the population on the absolute path provided.

This method uses, by default, pickle to save the population. The processing scheduler used by the
population won’t be saved (a new one will have to be assigned to the population when it’s loaded again).

Parameters abs_path (str) – Absolute path of the saving file. If the given path doesn’t end
with the suffix “.pkl”, it will be automatically added to it.

Return type None

property size
Size of the population.

Return type int
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6.6 nevopy.callbacks module

Defines a base interface for all callbacks and implements simple callbacks.

For NEvoPy, callbacks are utilities called at certain points during the evolution of a population. They are a powerful
tool to customize the behavior of a neuroevolutionary algorithm.

Example

To implement your own callback, simply create a class that inherits from Callback and pass an instance of it to
BasePopulation.evolve().

class MyCallback(Callback):
def on_generation_start(self,

current_generation,
max_generations):

print("This is printed at the start of every generation!")
print(f"Starting generation {current_generation} of "

f"{max_generations}.")

# ...

population.evolve(generations=100,
fitness_function=my_func,
callbacks=[MyCallback()])

class nevopy.callbacks.BestGenomeCheckpoint(output_path=None, min_improvement_pc=-
inf)

Bases: nevopy.callbacks.Callback

Saves the best genome of the population (checkpoint) at different moments of the evolutionary process.

Parameters

• output_path (Optional[str]) – Path of the output files. By default, the checkpoints
are saved to a new directory named according to the current date and time.

• min_improvement_pc (float) – Minimum improvement (percentage) in the pop-
ulation’s best fitness, since the last checkpoint, necessary for a new checkpoint. If
float('-inf') (default) the best genomes of all generations will be saved.

output_path
Path of the output files.

Type str

min_improvement_pc
Minimum improvement (percentage) in the population’s best fitness, since the last checkpoint, necessary
for a new checkpoint.

Type float

on_fitness_calculated(best_fitness, avg_fitness, **kwargs)
Called right after the fitness values of the population’s genomes are calculated.

Subclasses should override this method for any actions to run.

Parameters

• best_fitness (float) – Fitness of the fittest genome in the population.
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• avg_fitness (float) – Average fitness of the population’s genomes.

Return type None

on_generation_start(current_generation, max_generations, **kwargs)
Called at the beginning of each new generation.

Subclasses should override this method for any actions to run.

Parameters

• current_generation (int) – Number of the current generation.

• max_generations (int) – Maximum number of generations.

Return type None

class nevopy.callbacks.Callback
Bases: abc.ABC

Abstract base class used to build new callbacks.

This class defines the general structure of the callbacks used by NEvoPy’s neuroevolutionary algorithms. It’s
not required for a subclass to implement all the methods of this class (you can implement only those that will be
useful for your case).

population
Reference to the instance of a subclass of Population being evolved by one of NEvoPy’s neuroevolu-
tionary algorithms.

Type BasePopulation

on_evolution_end(total_generations, **kwargs)
Called when the evolutionary process ends.

Parameters total_generations (int) – Total number of generations processed during
the evolutionary process. Might not be the maximum number of generations specified by the
user, if some sort of early stopping occurs.

Return type None

on_fitness_calculated(best_fitness, avg_fitness, **kwargs)
Called right after the fitness values of the population’s genomes are calculated.

Subclasses should override this method for any actions to run.

Parameters

• best_fitness (float) – Fitness of the fittest genome in the population.

• avg_fitness (float) – Average fitness of the population’s genomes.

Return type None

on_generation_end(current_generation, max_generations, **kwargs)
Called at the end of each generation.

Subclasses should override this method for any actions to run.

Parameters

• current_generation (int) – Number of the current generation.

• max_generations (int) – Maximum number of generations.

Return type None
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on_generation_start(current_generation, max_generations, **kwargs)
Called at the beginning of each new generation.

Subclasses should override this method for any actions to run.

Parameters

• current_generation (int) – Number of the current generation.

• max_generations (int) – Maximum number of generations.

Return type None

on_mass_extinction_counter_updated(mass_extinction_counter, **kwargs)
Called right after the mass extinction counter is updated.

Subclasses should override this method for any actions to run.

Parameters mass_extinction_counter (int) – Current value of the mass extinction
counter.

Return type None

on_mass_extinction_start(**kwargs)
Called at the beginning of a mass extinction event.

Subclasses should override this method for any actions to run.

Note: When this is called, on_reproduction_start() is usually not called (depends on the algo-
rithm).

Return type None

on_reproduction_start(**kwargs)
Called at the beginning of the reproductive process.

Subclasses should override this method for any actions to run.

Note: When this is called, on_mass_extinction_start() is usually not called (depends on the
algorithm).

Return type None

on_speciation_start(**kwargs)
Called at the beginning of the speciation process.

Called after the reproduction or mass extinction have occurred and immediately before the speciation
process. If the neuroevolution algorithm doesn’t implement speciation, this method won’t be called.

Subclasses should override this method for any actions to run.

Return type None

class nevopy.callbacks.CompleteStdOutLogger(colored_text=True, out-
put_cleaner=<function clear_output>)

Bases: nevopy.callbacks.Callback

Callback that prints info to the standard output.
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Note: This callback is heavily verbose / wordy! Consider using the reduced logger (SimpleStdOutLogger)
if you don’t like too much text on your screen.

SEP_SIZE = 80

TAB_ARGS = {'justify': 'c', 'min_column_width': 14, 'no_borders': False}

on_evolution_end(total_generations, **kwargs)
Called when the evolutionary process ends.

Parameters total_generations (int) – Total number of generations processed during
the evolutionary process. Might not be the maximum number of generations specified by the
user, if some sort of early stopping occurs.

Return type None

on_fitness_calculated(best_fitness, avg_fitness, **kwargs)
Called right after the fitness values of the population’s genomes are calculated.

Subclasses should override this method for any actions to run.

Parameters

• best_fitness (float) – Fitness of the fittest genome in the population.

• avg_fitness (float) – Average fitness of the population’s genomes.

Return type None

on_generation_end(current_generation, max_generations, **kwargs)
Called at the end of each generation.

Subclasses should override this method for any actions to run.

Parameters

• current_generation (int) – Number of the current generation.

• max_generations (int) – Maximum number of generations.

Return type None

on_generation_start(current_generation, max_generations, **kwargs)
Called at the beginning of each new generation.

Subclasses should override this method for any actions to run.

Parameters

• current_generation (int) – Number of the current generation.

• max_generations (int) – Maximum number of generations.

Return type None

on_mass_extinction_counter_updated(mass_extinction_counter, **kwargs)
Called right after the mass extinction counter is updated.

Subclasses should override this method for any actions to run.

Parameters mass_extinction_counter (int) – Current value of the mass extinction
counter.

Return type None
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on_mass_extinction_start(**kwargs)
Called at the beginning of a mass extinction event.

Subclasses should override this method for any actions to run.

Note: When this is called, on_reproduction_start() is usually not called (depends on the algo-
rithm).

Return type None

on_reproduction_start(**kwargs)
Called at the beginning of the reproductive process.

Subclasses should override this method for any actions to run.

Note: When this is called, on_mass_extinction_start() is usually not called (depends on the
algorithm).

Return type None

on_speciation_start(**kwargs)
Called at the beginning of the speciation process.

Called after the reproduction or mass extinction have occurred and immediately before the speciation
process. If the neuroevolution algorithm doesn’t implement speciation, this method won’t be called.

Subclasses should override this method for any actions to run.

Return type None

class nevopy.callbacks.FitnessEarlyStopping(fitness_threshold,
min_consecutive_generations)

Bases: nevopy.callbacks.Callback

Stops the evolution if a given fitness value is achieved.

This callback is used to halt the evolutionary process when a certain fitness value is achieved by the population’s
best genome for a given number of consecutive generations.

Parameters

• fitness_threshold (float) – Fitness to be achieved for the evolution to stop.

• min_consecutive_generations (int) – Number of consecutive generations with
a fitness equal or higher than fitness_threshold for the early stopping to occur.

fitness_threshold
Fitness to be achieved for the evolution to stop.

Type float

min_consecutive_generations
Number of consecutive generations with a fitness equal or higher than fitness_threshold for the
early stopping to occur.

Type int

stopped_generation
Generation in which the early stopping occurred. None if the early stopping never occurred.
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Type Optional[int]

on_fitness_calculated(best_fitness, avg_fitness, **kwargs)
Called right after the fitness values of the population’s genomes are calculated.

Subclasses should override this method for any actions to run.

Parameters

• best_fitness (float) – Fitness of the fittest genome in the population.

• avg_fitness (float) – Average fitness of the population’s genomes.

Return type None

on_generation_end(current_generation, max_generations, **kwargs)
Called at the end of each generation.

Subclasses should override this method for any actions to run.

Parameters

• current_generation (int) – Number of the current generation.

• max_generations (int) – Maximum number of generations.

Return type None

class nevopy.callbacks.History
Bases: nevopy.callbacks.Callback

Callback that records events during the evolutionary process.

Besides the regular attributes in the methods signature, the caller can also pass other attributes through “kwargs”.
All the attributes passed to the methods will have they value stored in the history dictionary.

history
Dictionary that maps an attribute’s name to a list with the attribute’s values along the evolutionary process.

Type Dict[str, List[Any]]

on_evolution_end(total_generations, **kwargs)
Called when the evolutionary process ends.

Parameters total_generations (int) – Total number of generations processed during
the evolutionary process. Might not be the maximum number of generations specified by the
user, if some sort of early stopping occurs.

Return type None

on_fitness_calculated(best_fitness, avg_fitness, **kwargs)
Called right after the fitness values of the population’s genomes are calculated.

Subclasses should override this method for any actions to run.

Parameters

• best_fitness (float) – Fitness of the fittest genome in the population.

• avg_fitness (float) – Average fitness of the population’s genomes.

Return type None

on_generation_end(current_generation, max_generations, **kwargs)
Called at the end of each generation.

Subclasses should override this method for any actions to run.
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Parameters

• current_generation (int) – Number of the current generation.

• max_generations (int) – Maximum number of generations.

Return type None

on_generation_start(current_generation, max_generations, **kwargs)
Called at the beginning of each new generation.

Subclasses should override this method for any actions to run.

Parameters

• current_generation (int) – Number of the current generation.

• max_generations (int) – Maximum number of generations.

Return type None

on_mass_extinction_counter_updated(mass_extinction_counter, **kwargs)
Called right after the mass extinction counter is updated.

Subclasses should override this method for any actions to run.

Parameters mass_extinction_counter (int) – Current value of the mass extinction
counter.

Return type None

on_mass_extinction_start(**kwargs)
Called at the beginning of a mass extinction event.

Subclasses should override this method for any actions to run.

Note: When this is called, on_reproduction_start() is usually not called (depends on the algo-
rithm).

Return type None

on_reproduction_start(**kwargs)
Called at the beginning of the reproductive process.

Subclasses should override this method for any actions to run.

Note: When this is called, on_mass_extinction_start() is usually not called (depends on the
algorithm).

Return type None

on_speciation_start(**kwargs)
Called at the beginning of the speciation process.

Called after the reproduction or mass extinction have occurred and immediately before the speciation
process. If the neuroevolution algorithm doesn’t implement speciation, this method won’t be called.

Subclasses should override this method for any actions to run.

Return type None
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visualize(attrs=('best_fitness', 'avg_fitness'), figsize=(10, 6), log_scale=True)
Simple utility method for plotting the recorded information.

This method is a simple wrapper around matplotlib. It isn’t suited for advanced plotting.

attrs
Tuple with the names of the attributes to be plotted. If “all”, all plottable attributes are plotted.

Type Union[Tuple[str, ..], str]

log_scale
Whether or not to use a logarithmic scale on the y-axis.

Type bool

Return type None

class nevopy.callbacks.SimpleStdOutLogger
Bases: nevopy.callbacks.Callback

Callback that prints minimal info to the standard output.

on_evolution_end(total_generations, **kwargs)
Called when the evolutionary process ends.

Parameters total_generations (int) – Total number of generations processed during
the evolutionary process. Might not be the maximum number of generations specified by the
user, if some sort of early stopping occurs.

Return type None

on_fitness_calculated(best_fitness, avg_fitness, **kwargs)
Called right after the fitness values of the population’s genomes are calculated.

Subclasses should override this method for any actions to run.

Parameters

• best_fitness (float) – Fitness of the fittest genome in the population.

• avg_fitness (float) – Average fitness of the population’s genomes.

Return type None

on_generation_start(current_generation, max_generations, **kwargs)
Called at the beginning of each new generation.

Subclasses should override this method for any actions to run.

Parameters

• current_generation (int) – Number of the current generation.

• max_generations (int) – Maximum number of generations.

Return type None

on_mass_extinction_counter_updated(mass_extinction_counter, **kwargs)
Called right after the mass extinction counter is updated.

Subclasses should override this method for any actions to run.

Parameters mass_extinction_counter (int) – Current value of the mass extinction
counter.

Return type None
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on_mass_extinction_start(**kwargs)
Called at the beginning of a mass extinction event.

Subclasses should override this method for any actions to run.

Note: When this is called, on_reproduction_start() is usually not called (depends on the algo-
rithm).

Return type None

6.7 Module contents

Imports the core names of NEvoPy.
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